arm_convolve_HWC_q7_fast.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408
  1. /*
  2. * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Licensed under the Apache License, Version 2.0 (the License); you may
  7. * not use this file except in compliance with the License.
  8. * You may obtain a copy of the License at
  9. *
  10. * www.apache.org/licenses/LICENSE-2.0
  11. *
  12. * Unless required by applicable law or agreed to in writing, software
  13. * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  14. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  15. * See the License for the specific language governing permissions and
  16. * limitations under the License.
  17. */
  18. /* ----------------------------------------------------------------------
  19. * Project: CMSIS NN Library
  20. * Title: arm_convolve_HWC_q7_fast.c
  21. * Description: Fast Q7 version of convolution
  22. *
  23. * $Date: 17. January 2018
  24. * $Revision: V.1.0.0
  25. *
  26. * Target Processor: Cortex-M cores
  27. *
  28. * -------------------------------------------------------------------- */
  29. #include "arm_math.h"
  30. #include "arm_nnfunctions.h"
  31. /**
  32. * @ingroup groupNN
  33. */
  34. /**
  35. * @addtogroup NNConv
  36. * @{
  37. */
  38. /**
  39. * @brief Fast Q7 convolution function
  40. * @param[in] Im_in pointer to input tensor
  41. * @param[in] dim_im_in input tensor dimention
  42. * @param[in] ch_im_in number of input tensor channels
  43. * @param[in] wt pointer to kernel weights
  44. * @param[in] ch_im_out number of filters, i.e., output tensor channels
  45. * @param[in] dim_kernel filter kernel size
  46. * @param[in] padding padding sizes
  47. * @param[in] stride convolution stride
  48. * @param[in] bias pointer to bias
  49. * @param[in] bias_shift amount of left-shift for bias
  50. * @param[in] out_shift amount of right-shift for output
  51. * @param[in,out] Im_out pointer to output tensor
  52. * @param[in] dim_im_out output tensor dimension
  53. * @param[in,out] bufferA pointer to buffer space for input
  54. * @param[in,out] bufferB pointer to buffer space for output
  55. * @return The function returns either
  56. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  57. *
  58. * @details
  59. *
  60. * <b>Buffer size:</b>
  61. *
  62. * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
  63. *
  64. * bufferB size: 0
  65. *
  66. * <b>Input dimension constraints:</b>
  67. *
  68. * ch_im_in is multiple of 4 ( because of the SIMD32 read and swap )
  69. *
  70. * ch_im_out is multipe of 2 ( bacause 2x2 mat_mult kernel )
  71. *
  72. * The im2col converts the Q7 tensor input into Q15 column, which is stored in
  73. * bufferA. There is reordering happenning during this im2col process with
  74. * arm_q7_to_q15_reordered_no_shift. For every four elements, the second and
  75. * third elements are swapped.
  76. *
  77. * The computation kernel arm_nn_mat_mult_kernel_q7_q15_reordered does the
  78. * GEMM computation with the reordered columns.
  79. *
  80. * To speed-up the determination of the padding condition, we split the
  81. * computation into 3x3 parts, i.e., {top, mid, bottom} X {left, mid, right}.
  82. * This reduces the total number of boundary condition checks and improves
  83. * the data copying performance.
  84. */
  85. arm_status
  86. arm_convolve_HWC_q7_fast(const q7_t * Im_in,
  87. const uint16_t dim_im_in,
  88. const uint16_t ch_im_in,
  89. const q7_t * wt,
  90. const uint16_t ch_im_out,
  91. const uint16_t dim_kernel,
  92. const uint16_t padding,
  93. const uint16_t stride,
  94. const q7_t * bias,
  95. const uint16_t bias_shift,
  96. const uint16_t out_shift,
  97. q7_t * Im_out,
  98. const uint16_t dim_im_out,
  99. q15_t * bufferA,
  100. q7_t * bufferB)
  101. {
  102. #if defined (ARM_MATH_DSP)
  103. /* Run the following code for Cortex-M4 and Cortex-M7 */
  104. int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
  105. /*
  106. * Here we use bufferA as q15_t internally as computation are done with q15_t level
  107. * im2col are done to output in q15_t format from q7_t input
  108. */
  109. q15_t *pBuffer = bufferA;
  110. q7_t *pOut = Im_out;
  111. if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
  112. {
  113. /* check if the input dimension meets the constraints */
  114. return ARM_MATH_SIZE_MISMATCH;
  115. }
  116. /*
  117. * Here we split the entire matrix into three regions depending on the padding situation
  118. * Top: i_out_y from 0 to padding - 1
  119. * Middle: i_out_y from padding to dim_im_out-padding-1
  120. * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1
  121. */
  122. /* top part */
  123. for (i_out_y = 0; i_out_y < padding; i_out_y++)
  124. {
  125. for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
  126. {
  127. /* This part implements the im2col function */
  128. for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
  129. {
  130. for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
  131. {
  132. if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
  133. {
  134. /* arm_fill_q15(0, pBuffer, ch_im_in); */
  135. memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
  136. } else
  137. {
  138. arm_q7_to_q15_reordered_no_shift
  139. ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
  140. }
  141. pBuffer += ch_im_in;
  142. }
  143. }
  144. if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
  145. {
  146. pOut =
  147. arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
  148. bufferA,
  149. ch_im_out,
  150. ch_im_in
  151. *
  152. dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
  153. /* counter reset */
  154. pBuffer = bufferA;
  155. }
  156. }
  157. }
  158. /* middle part, here we also divide the x into left, mid and right */
  159. for (; i_out_y < dim_im_out - padding; i_out_y++)
  160. {
  161. /* left part */
  162. for (i_out_x = 0; i_out_x < padding; i_out_x++)
  163. {
  164. /* This part implements the im2col function */
  165. for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
  166. {
  167. for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
  168. {
  169. if (i_ker_x < 0 || i_ker_x >= dim_im_in)
  170. {
  171. /* arm_fill_q15(0, pBuffer, ch_im_in); */
  172. memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
  173. } else
  174. {
  175. arm_q7_to_q15_reordered_no_shift
  176. ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
  177. }
  178. pBuffer += ch_im_in;
  179. }
  180. }
  181. if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
  182. {
  183. pOut =
  184. arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
  185. bufferA,
  186. ch_im_out,
  187. ch_im_in
  188. *
  189. dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
  190. /* counter reset */
  191. pBuffer = bufferA;
  192. }
  193. }
  194. /* mid part */
  195. for (; i_out_x < dim_im_out - padding; i_out_x++)
  196. {
  197. /* This part implements the im2col function */
  198. for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
  199. {
  200. arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in
  201. +
  202. (i_ker_y *
  203. dim_im_in +
  204. i_out_x *
  205. stride - padding) * ch_im_in, pBuffer, ch_im_in * dim_kernel);
  206. pBuffer += ch_im_in * dim_kernel;
  207. }
  208. if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
  209. {
  210. pOut =
  211. arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
  212. bufferA,
  213. ch_im_out,
  214. ch_im_in
  215. *
  216. dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
  217. /* counter reset */
  218. pBuffer = bufferA;
  219. }
  220. }
  221. /* right part */
  222. for (; i_out_x < dim_im_out; i_out_x++)
  223. {
  224. /* This part implements the im2col function */
  225. for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
  226. {
  227. for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
  228. {
  229. if (i_ker_x < 0 || i_ker_x >= dim_im_in)
  230. {
  231. /* arm_fill_q15(0, pBuffer, ch_im_in); */
  232. memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
  233. } else
  234. {
  235. arm_q7_to_q15_reordered_no_shift
  236. ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
  237. }
  238. pBuffer += ch_im_in;
  239. }
  240. }
  241. if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
  242. {
  243. pOut =
  244. arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
  245. bufferA,
  246. ch_im_out,
  247. ch_im_in
  248. *
  249. dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
  250. /* counter reset */
  251. pBuffer = bufferA;
  252. }
  253. }
  254. }
  255. for (; i_out_y < dim_im_out; i_out_y++)
  256. {
  257. for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
  258. {
  259. /* This part implements the im2col function */
  260. for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
  261. {
  262. for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
  263. {
  264. if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
  265. {
  266. /* arm_fill_q15(0, pBuffer, ch_im_in); */
  267. memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
  268. } else
  269. {
  270. arm_q7_to_q15_reordered_no_shift
  271. ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
  272. }
  273. pBuffer += ch_im_in;
  274. }
  275. }
  276. if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
  277. {
  278. pOut =
  279. arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
  280. bufferA,
  281. ch_im_out,
  282. ch_im_in
  283. *
  284. dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
  285. /* counter reset */
  286. pBuffer = bufferA;
  287. }
  288. }
  289. }
  290. /* check if there is left-over for compute */
  291. if (pBuffer != bufferA)
  292. {
  293. const q7_t *pA = wt;
  294. int i;
  295. for (i = 0; i < ch_im_out; i++)
  296. {
  297. q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
  298. q15_t *pB = bufferA;
  299. /* each time it process 4 entries */
  300. uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
  301. while (colCnt)
  302. {
  303. q31_t inA1, inA2;
  304. q31_t inB1, inB2;
  305. pA = (q7_t *) read_and_pad_reordered((void *)pA, &inA1, &inA2);
  306. inB1 = *__SIMD32(pB)++;
  307. sum = __SMLAD(inA1, inB1, sum);
  308. inB2 = *__SIMD32(pB)++;
  309. sum = __SMLAD(inA2, inB2, sum);
  310. colCnt--;
  311. }
  312. colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
  313. while (colCnt)
  314. {
  315. q7_t inA1 = *pA++;
  316. q15_t inB1 = *pB++;
  317. sum += inA1 * inB1;
  318. colCnt--;
  319. }
  320. *pOut = (q7_t) __SSAT((sum >> out_shift), 8);
  321. pOut++;
  322. }
  323. }
  324. #else
  325. /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
  326. uint16_t i, j, k, l, m, n;
  327. int conv_out;
  328. signed char in_row, in_col;
  329. if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
  330. {
  331. /* check if the input dimension meets the constraints */
  332. return ARM_MATH_SIZE_MISMATCH;
  333. }
  334. for (i = 0; i < ch_im_out; i++)
  335. {
  336. for (j = 0; j < dim_im_out; j++)
  337. {
  338. for (k = 0; k < dim_im_out; k++)
  339. {
  340. conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift);
  341. for (m = 0; m < dim_kernel; m++)
  342. {
  343. for (n = 0; n < dim_kernel; n++)
  344. {
  345. // if-for implementation
  346. in_row = stride * j + m - padding;
  347. in_col = stride * k + n - padding;
  348. if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
  349. {
  350. for (l = 0; l < ch_im_in; l++)
  351. {
  352. conv_out +=
  353. Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
  354. l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
  355. n) * ch_im_in + l];
  356. }
  357. }
  358. }
  359. }
  360. Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
  361. }
  362. }
  363. }
  364. #endif /* ARM_MATH_DSP */
  365. /* Return to application */
  366. return ARM_MATH_SUCCESS;
  367. }
  368. /**
  369. * @} end of NNConv group
  370. */