123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- /*
- * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /* ----------------------------------------------------------------------
- * Project: CMSIS NN Library
- * Title: arm_nnsupportfunctions.h
- * Description: Public header file of support functions for CMSIS NN Library
- *
- * $Date: 13. July 2018
- * $Revision: V.1.0.0
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
- #ifndef _ARM_NNSUPPORTFUNCTIONS_H_
- #define _ARM_NNSUPPORTFUNCTIONS_H_
- #include "arm_math.h"
- #include "arm_common_tables.h"
- //#include <cstring>
- #ifdef __cplusplus
- extern "C"
- {
- #endif
- /**
- * @brief Union for SIMD access of Q31/Q15/Q7 types
- */
- union arm_nnword
- {
- q31_t word;
- /**< Q31 type */
- q15_t half_words[2];
- /**< Q15 type */
- q7_t bytes[4];
- /**< Q7 type */
- };
- /**
- * @brief Struct for specifying activation function types
- *
- */
- typedef enum
- {
- ARM_SIGMOID = 0,
- /**< Sigmoid activation function */
- ARM_TANH = 1,
- /**< Tanh activation function */
- } arm_nn_activation_type;
- /**
- * @defgroup nndata_convert Neural Network Data Conversion Functions
- *
- * Perform data type conversion in-between neural network operations
- *
- */
- /**
- * @brief Converts the elements of the Q7 vector to Q15 vector without left-shift
- * @param[in] *pSrc points to the Q7 input vector
- * @param[out] *pDst points to the Q15 output vector
- * @param[in] blockSize length of the input vector
- * @return none.
- *
- */
- void arm_q7_to_q15_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize);
- /**
- * @brief Converts the elements of the Q7 vector to reordered Q15 vector without left-shift
- * @param[in] *pSrc points to the Q7 input vector
- * @param[out] *pDst points to the Q15 output vector
- * @param[in] blockSize length of the input vector
- * @return none.
- *
- */
- void arm_q7_to_q15_reordered_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize);
- #if defined (ARM_MATH_DSP)
- /**
- * @brief read and expand one Q7 word into two Q15 words
- */
- __STATIC_FORCEINLINE void *read_and_pad(void *source, q31_t * out1, q31_t * out2)
- {
- q31_t inA = *__SIMD32(source)++;
- q31_t inAbuf1 = __SXTB16(__ROR(inA, 8));
- q31_t inAbuf2 = __SXTB16(inA);
- #ifndef ARM_MATH_BIG_ENDIAN
- *out2 = __PKHTB(inAbuf1, inAbuf2, 16);
- *out1 = __PKHBT(inAbuf2, inAbuf1, 16);
- #else
- *out1 = __PKHTB(inAbuf1, inAbuf2, 16);
- *out2 = __PKHBT(inAbuf2, inAbuf1, 16);
- #endif
- return source;
- }
- /**
- * @brief read and expand one Q7 word into two Q15 words with reordering
- */
- __STATIC_FORCEINLINE void *read_and_pad_reordered(void *source, q31_t * out1, q31_t * out2)
- {
- q31_t inA = *__SIMD32(source)++;
- #ifndef ARM_MATH_BIG_ENDIAN
- *out2 = __SXTB16(__ROR(inA, 8));
- *out1 = __SXTB16(inA);
- #else
- *out1 = __SXTB16(__ROR(inA, 8));
- *out2 = __SXTB16(inA);
- #endif
- return source;
- }
- #endif
- /**
- * @defgroup NNBasicMath Basic Math Functions for Neural Network Computation
- *
- * Basic Math Functions for Neural Network Computation
- *
- */
- /**
- * @brief Q7 vector multiplication with variable output shifts
- * @param[in] *pSrcA pointer to the first input vector
- * @param[in] *pSrcB pointer to the second input vector
- * @param[out] *pDst pointer to the output vector
- * @param[in] out_shift amount of right-shift for output
- * @param[in] blockSize number of samples in each vector
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function uses saturating arithmetic.
- * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
- */
- void arm_nn_mult_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- q15_t * pDst,
- const uint16_t out_shift,
- uint32_t blockSize);
-
- /**
- * @brief Q7 vector multiplication with variable output shifts
- * @param[in] *pSrcA pointer to the first input vector
- * @param[in] *pSrcB pointer to the second input vector
- * @param[out] *pDst pointer to the output vector
- * @param[in] out_shift amount of right-shift for output
- * @param[in] blockSize number of samples in each vector
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function uses saturating arithmetic.
- * Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
- */
- void arm_nn_mult_q7(
- q7_t * pSrcA,
- q7_t * pSrcB,
- q7_t * pDst,
- const uint16_t out_shift,
- uint32_t blockSize);
-
- /**
- * @brief defition to adding rouding offset
- */
- #ifndef ARM_NN_TRUNCATE
- #define NN_ROUND(out_shift) ( 0x1 << (out_shift - 1) )
- #else
- #define NN_ROUND(out_shift) 0
- #endif
- #ifdef __cplusplus
- }
- #endif
- #endif
|