123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_rfft_f32.c
- * Description: RFFT & RIFFT Floating point process function
- *
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "arm_math.h"
- void stage_rfft_f32(
- arm_rfft_fast_instance_f32 * S,
- float32_t * p, float32_t * pOut)
- {
- uint32_t k; /* Loop Counter */
- float32_t twR, twI; /* RFFT Twiddle coefficients */
- float32_t * pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */
- float32_t *pA = p; /* increasing pointer */
- float32_t *pB = p; /* decreasing pointer */
- float32_t xAR, xAI, xBR, xBI; /* temporary variables */
- float32_t t1a, t1b; /* temporary variables */
- float32_t p0, p1, p2, p3; /* temporary variables */
- k = (S->Sint).fftLen - 1;
- /* Pack first and last sample of the frequency domain together */
- xBR = pB[0];
- xBI = pB[1];
- xAR = pA[0];
- xAI = pA[1];
- twR = *pCoeff++ ;
- twI = *pCoeff++ ;
- // U1 = XA(1) + XB(1); % It is real
- t1a = xBR + xAR ;
- // U2 = XB(1) - XA(1); % It is imaginary
- t1b = xBI + xAI ;
- // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
- // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
- *pOut++ = 0.5f * ( t1a + t1b );
- *pOut++ = 0.5f * ( t1a - t1b );
- // XA(1) = 1/2*( U1 - imag(U2) + i*( U1 +imag(U2) ));
- pB = p + 2*k;
- pA += 2;
- do
- {
- /*
- function X = my_split_rfft(X, ifftFlag)
- % X is a series of real numbers
- L = length(X);
- XC = X(1:2:end) +i*X(2:2:end);
- XA = fft(XC);
- XB = conj(XA([1 end:-1:2]));
- TW = i*exp(-2*pi*i*[0:L/2-1]/L).';
- for l = 2:L/2
- XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l)));
- end
- XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1))));
- X = XA;
- */
- xBI = pB[1];
- xBR = pB[0];
- xAR = pA[0];
- xAI = pA[1];
- twR = *pCoeff++;
- twI = *pCoeff++;
- t1a = xBR - xAR ;
- t1b = xBI + xAI ;
- // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
- // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
- p0 = twR * t1a;
- p1 = twI * t1a;
- p2 = twR * t1b;
- p3 = twI * t1b;
- *pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR
- *pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI
- pA += 2;
- pB -= 2;
- k--;
- } while (k > 0U);
- }
- /* Prepares data for inverse cfft */
- void merge_rfft_f32(
- arm_rfft_fast_instance_f32 * S,
- float32_t * p, float32_t * pOut)
- {
- uint32_t k; /* Loop Counter */
- float32_t twR, twI; /* RFFT Twiddle coefficients */
- float32_t *pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */
- float32_t *pA = p; /* increasing pointer */
- float32_t *pB = p; /* decreasing pointer */
- float32_t xAR, xAI, xBR, xBI; /* temporary variables */
- float32_t t1a, t1b, r, s, t, u; /* temporary variables */
- k = (S->Sint).fftLen - 1;
- xAR = pA[0];
- xAI = pA[1];
- pCoeff += 2 ;
- *pOut++ = 0.5f * ( xAR + xAI );
- *pOut++ = 0.5f * ( xAR - xAI );
- pB = p + 2*k ;
- pA += 2 ;
- while (k > 0U)
- {
- /* G is half of the frequency complex spectrum */
- //for k = 2:N
- // Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2))));
- xBI = pB[1] ;
- xBR = pB[0] ;
- xAR = pA[0];
- xAI = pA[1];
- twR = *pCoeff++;
- twI = *pCoeff++;
- t1a = xAR - xBR ;
- t1b = xAI + xBI ;
- r = twR * t1a;
- s = twI * t1b;
- t = twI * t1a;
- u = twR * t1b;
- // real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI);
- // imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI);
- *pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR
- *pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI
- pA += 2;
- pB -= 2;
- k--;
- }
- }
- /**
- * @ingroup groupTransforms
- */
- /**
- * @defgroup RealFFT Real FFT Functions
- *
- * \par
- * The CMSIS DSP library includes specialized algorithms for computing the
- * FFT of real data sequences. The FFT is defined over complex data but
- * in many applications the input is real. Real FFT algorithms take advantage
- * of the symmetry properties of the FFT and have a speed advantage over complex
- * algorithms of the same length.
- * \par
- * The Fast RFFT algorith relays on the mixed radix CFFT that save processor usage.
- * \par
- * The real length N forward FFT of a sequence is computed using the steps shown below.
- * \par
- * \image html RFFT.gif "Real Fast Fourier Transform"
- * \par
- * The real sequence is initially treated as if it were complex to perform a CFFT.
- * Later, a processing stage reshapes the data to obtain half of the frequency spectrum
- * in complex format. Except the first complex number that contains the two real numbers
- * X[0] and X[N/2] all the data is complex. In other words, the first complex sample
- * contains two real values packed.
- * \par
- * The input for the inverse RFFT should keep the same format as the output of the
- * forward RFFT. A first processing stage pre-process the data to later perform an
- * inverse CFFT.
- * \par
- * \image html RIFFT.gif "Real Inverse Fast Fourier Transform"
- * \par
- * The algorithms for floating-point, Q15, and Q31 data are slightly different
- * and we describe each algorithm in turn.
- * \par Floating-point
- * The main functions are arm_rfft_fast_f32() and arm_rfft_fast_init_f32().
- * The older functions arm_rfft_f32() and arm_rfft_init_f32() have been
- * deprecated but are still documented.
- * \par
- * The FFT of a real N-point sequence has even symmetry in the frequency
- * domain. The second half of the data equals the conjugate of the first
- * half flipped in frequency. Looking at the data, we see that we can
- * uniquely represent the FFT using only N/2 complex numbers. These are
- * packed into the output array in alternating real and imaginary
- * components:
- * \par
- * X = { real[0], imag[0], real[1], imag[1], real[2], imag[2] ...
- * real[(N/2)-1], imag[(N/2)-1 }
- * \par
- * It happens that the first complex number (real[0], imag[0]) is actually
- * all real. real[0] represents the DC offset, and imag[0] should be 0.
- * (real[1], imag[1]) is the fundamental frequency, (real[2], imag[2]) is
- * the first harmonic and so on.
- * \par
- * The real FFT functions pack the frequency domain data in this fashion.
- * The forward transform outputs the data in this form and the inverse
- * transform expects input data in this form. The function always performs
- * the needed bitreversal so that the input and output data is always in
- * normal order. The functions support lengths of [32, 64, 128, ..., 4096]
- * samples.
- * \par Q15 and Q31
- * The real algorithms are defined in a similar manner and utilize N/2 complex
- * transforms behind the scenes.
- * \par
- * The complex transforms used internally include scaling to prevent fixed-point
- * overflows. The overall scaling equals 1/(fftLen/2).
- * \par
- * A separate instance structure must be defined for each transform used but
- * twiddle factor and bit reversal tables can be reused.
- * \par
- * There is also an associated initialization function for each data type.
- * The initialization function performs the following operations:
- * - Sets the values of the internal structure fields.
- * - Initializes twiddle factor table and bit reversal table pointers.
- * - Initializes the internal complex FFT data structure.
- * \par
- * Use of the initialization function is optional.
- * However, if the initialization function is used, then the instance structure
- * cannot be placed into a const data section. To place an instance structure
- * into a const data section, the instance structure should be manually
- * initialized as follows:
- * <pre>
- *arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
- *arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
- * </pre>
- * where <code>fftLenReal</code> is the length of the real transform;
- * <code>fftLenBy2</code> length of the internal complex transform.
- * <code>ifftFlagR</code> Selects forward (=0) or inverse (=1) transform.
- * <code>bitReverseFlagR</code> Selects bit reversed output (=0) or normal order
- * output (=1).
- * <code>twidCoefRModifier</code> stride modifier for the twiddle factor table.
- * The value is based on the FFT length;
- * <code>pTwiddleAReal</code>points to the A array of twiddle coefficients;
- * <code>pTwiddleBReal</code>points to the B array of twiddle coefficients;
- * <code>pCfft</code> points to the CFFT Instance structure. The CFFT structure
- * must also be initialized. Refer to arm_cfft_radix4_f32() for details regarding
- * static initialization of the complex FFT instance structure.
- */
- /**
- * @addtogroup RealFFT
- * @{
- */
- /**
- * @brief Processing function for the floating-point real FFT.
- * @param[in] *S points to an arm_rfft_fast_instance_f32 structure.
- * @param[in] *p points to the input buffer.
- * @param[in] *pOut points to the output buffer.
- * @param[in] ifftFlag RFFT if flag is 0, RIFFT if flag is 1
- * @return none.
- */
- void arm_rfft_fast_f32(
- arm_rfft_fast_instance_f32 * S,
- float32_t * p, float32_t * pOut,
- uint8_t ifftFlag)
- {
- arm_cfft_instance_f32 * Sint = &(S->Sint);
- Sint->fftLen = S->fftLenRFFT / 2;
- /* Calculation of Real FFT */
- if (ifftFlag)
- {
- /* Real FFT compression */
- merge_rfft_f32(S, p, pOut);
- /* Complex radix-4 IFFT process */
- arm_cfft_f32( Sint, pOut, ifftFlag, 1);
- }
- else
- {
- /* Calculation of RFFT of input */
- arm_cfft_f32( Sint, p, ifftFlag, 1);
- /* Real FFT extraction */
- stage_rfft_f32(S, p, pOut);
- }
- }
- /**
- * @} end of RealFFT group
- */
|