123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_mult_fast_q31.c
- * Description: Q31 matrix multiplication (fast variant)
- *
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "arm_math.h"
- /**
- * @ingroup groupMatrix
- */
- /**
- * @addtogroup MatrixMult
- * @{
- */
- /**
- * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * @details
- * <b>Scaling and Overflow Behavior:</b>
- *
- * \par
- * The difference between the function arm_mat_mult_q31() and this fast variant is that
- * the fast variant use a 32-bit rather than a 64-bit accumulator.
- * The result of each 1.31 x 1.31 multiplication is truncated to
- * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
- * format. Finally, the accumulator is saturated and converted to a 1.31 result.
- *
- * \par
- * The fast version has the same overflow behavior as the standard version but provides
- * less precision since it discards the low 32 bits of each multiplication result.
- * In order to avoid overflows completely the input signals must be scaled down.
- * Scale down one of the input matrices by log2(numColsA) bits to
- * avoid overflows, as a total of numColsA additions are computed internally for each
- * output element.
- *
- * \par
- * See <code>arm_mat_mult_q31()</code> for a slower implementation of this function
- * which uses 64-bit accumulation to provide higher precision.
- */
- arm_status arm_mat_mult_fast_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
- {
- q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- q31_t *px; /* Temporary output data matrix pointer */
- q31_t sum; /* Accumulator */
- uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */
- arm_status status; /* status of matrix multiplication */
- q31_t inA1, inB1;
- #if defined (ARM_MATH_DSP)
- q31_t sum2, sum3, sum4;
- q31_t inA2, inB2;
- q31_t *pInA2;
- q31_t *px2;
- #endif
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- px = pDst->pData;
- #if defined (ARM_MATH_DSP)
- row = row >> 1;
- px2 = px + numColsB;
- #endif
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- while (row > 0U)
- {
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pInB = pSrcB->pData;
- j = 0U;
- #if defined (ARM_MATH_DSP)
- col = col >> 1;
- #endif
- /* column loop */
- while (col > 0U)
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sum = 0;
- /* Initiate data pointers */
- pInA = pSrcA->pData + i;
- pInB = pSrcB->pData + j;
- #if defined (ARM_MATH_DSP)
- sum2 = 0;
- sum3 = 0;
- sum4 = 0;
- pInA2 = pInA + numColsA;
- colCnt = numColsA;
- #else
- colCnt = numColsA >> 2;
- #endif
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- #if defined (ARM_MATH_DSP)
- inA1 = *pInA++;
- inB1 = pInB[0];
- inA2 = *pInA2++;
- inB2 = pInB[1];
- pInB += numColsB;
- sum = __SMMLA(inA1, inB1, sum);
- sum2 = __SMMLA(inA1, inB2, sum2);
- sum3 = __SMMLA(inA2, inB1, sum3);
- sum4 = __SMMLA(inA2, inB2, sum4);
- #else
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
- /* Perform the multiply-accumulates */
- inB1 = *pInB;
- pInB += numColsB;
- inA1 = pInA[0];
- sum = __SMMLA(inA1, inB1, sum);
- inB1 = *pInB;
- pInB += numColsB;
- inA1 = pInA[1];
- sum = __SMMLA(inA1, inB1, sum);
- inB1 = *pInB;
- pInB += numColsB;
- inA1 = pInA[2];
- sum = __SMMLA(inA1, inB1, sum);
- inB1 = *pInB;
- pInB += numColsB;
- inA1 = pInA[3];
- sum = __SMMLA(inA1, inB1, sum);
- pInA += 4U;
- #endif
- /* Decrement the loop counter */
- colCnt--;
- }
- #ifdef ARM_MATH_CM0_FAMILY
- /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here. */
- colCnt = numColsA % 0x4U;
- while (colCnt > 0U)
- {
- sum = __SMMLA(*pInA++, *pInB, sum);
- pInB += numColsB;
- colCnt--;
- }
- j++;
- #endif
- /* Convert the result from 2.30 to 1.31 format and store in destination buffer */
- *px++ = sum << 1;
- #if defined (ARM_MATH_DSP)
- *px++ = sum2 << 1;
- *px2++ = sum3 << 1;
- *px2++ = sum4 << 1;
- j += 2;
- #endif
- /* Decrement the column loop counter */
- col--;
- }
- i = i + numColsA;
- #if defined (ARM_MATH_DSP)
- i = i + numColsA;
- px = px2 + (numColsB & 1U);
- px2 = px + numColsB;
- #endif
- /* Decrement the row loop counter */
- row--;
- }
- /* Compute any remaining odd row/column below */
- #if defined (ARM_MATH_DSP)
- /* Compute remaining output column */
- if (numColsB & 1U) {
- /* Avoid redundant computation of last element */
- row = numRowsA & (~0x1);
- /* Point to remaining unfilled column in output matrix */
- px = pDst->pData+numColsB-1;
- pInA = pSrcA->pData;
- /* row loop */
- while (row > 0)
- {
- /* point to last column in matrix B */
- pInB = pSrcB->pData + numColsB-1;
- /* Set the variable sum, that acts as accumulator, to zero */
- sum = 0;
- /* Compute 4 columns at once */
- colCnt = numColsA >> 2;
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- inA1 = *pInA++;
- inA2 = *pInA++;
- inB1 = *pInB;
- pInB += numColsB;
- inB2 = *pInB;
- pInB += numColsB;
- sum = __SMMLA(inA1, inB1, sum);
- sum = __SMMLA(inA2, inB2, sum);
- inA1 = *pInA++;
- inA2 = *pInA++;
- inB1 = *pInB;
- pInB += numColsB;
- inB2 = *pInB;
- pInB += numColsB;
- sum = __SMMLA(inA1, inB1, sum);
- sum = __SMMLA(inA2, inB2, sum);
- /* Decrement the loop counter */
- colCnt--;
- }
- colCnt = numColsA & 3U;
- while (colCnt > 0U) {
- sum = __SMMLA(*pInA++, *pInB, sum);
- pInB += numColsB;
- colCnt--;
- }
- /* Convert the result from 2.30 to 1.31 format and store in destination buffer */
- *px = sum << 1;
- px += numColsB;
- /* Decrement the row loop counter */
- row--;
- }
- }
- /* Compute remaining output row */
- if (numRowsA & 1U) {
- /* point to last row in output matrix */
- px = pDst->pData+(numColsB)*(numRowsA-1);
- col = numColsB;
- i = 0U;
- /* col loop */
- while (col > 0)
- {
- /* point to last row in matrix A */
- pInA = pSrcA->pData + (numRowsA-1)*numColsA;
- pInB = pSrcB->pData + i;
- /* Set the variable sum, that acts as accumulator, to zero */
- sum = 0;
- /* Compute 4 columns at once */
- colCnt = numColsA >> 2;
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- inA1 = *pInA++;
- inA2 = *pInA++;
- inB1 = *pInB;
- pInB += numColsB;
- inB2 = *pInB;
- pInB += numColsB;
- sum = __SMMLA(inA1, inB1, sum);
- sum = __SMMLA(inA2, inB2, sum);
- inA1 = *pInA++;
- inA2 = *pInA++;
- inB1 = *pInB;
- pInB += numColsB;
- inB2 = *pInB;
- pInB += numColsB;
- sum = __SMMLA(inA1, inB1, sum);
- sum = __SMMLA(inA2, inB2, sum);
- /* Decrement the loop counter */
- colCnt--;
- }
- colCnt = numColsA & 3U;
- while (colCnt > 0U) {
- sum = __SMMLA(*pInA++, *pInB, sum);
- pInB += numColsB;
- colCnt--;
- }
- /* Saturate and store the result in the destination buffer */
- *px++ = sum << 1;
- i++;
- /* Decrement the col loop counter */
- col--;
- }
- }
- #endif /* #if defined (ARM_MATH_DSP) */
- /* set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
- /* Return to application */
- return (status);
- }
- /**
- * @} end of MatrixMult group
- */
|