123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_cmplx_mat_mult_q15.c
- * Description: Q15 complex matrix multiplication
- *
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "arm_math.h"
- /**
- * @ingroup groupMatrix
- */
- /**
- * @addtogroup CmplxMatrixMult
- * @{
- */
- /**
- * @brief Q15 Complex matrix multiplication
- * @param[in] *pSrcA points to the first input complex matrix structure
- * @param[in] *pSrcB points to the second input complex matrix structure
- * @param[out] *pDst points to output complex matrix structure
- * @param[in] *pScratch points to the array for storing intermediate results
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * \par Conditions for optimum performance
- * Input, output and state buffers should be aligned by 32-bit
- *
- * \par Restrictions
- * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
- * In this case input, output, scratch buffers should be aligned by 32-bit
- *
- * @details
- * <b>Scaling and Overflow Behavior:</b>
- *
- * \par
- * The function is implemented using a 64-bit internal accumulator. The inputs to the
- * multiplications are in 1.15 format and multiplications yield a 2.30 result.
- * The 2.30 intermediate
- * results are accumulated in a 64-bit accumulator in 34.30 format. This approach
- * provides 33 guard bits and there is no risk of overflow. The 34.30 result is then
- * truncated to 34.15 format by discarding the low 15 bits and then saturated to
- * 1.15 format.
- *
- * \par
- * Refer to <code>arm_mat_mult_fast_q15()</code> for a faster but less precise version of this function.
- *
- */
- arm_status arm_mat_cmplx_mult_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst,
- q15_t * pScratch)
- {
- /* accumulator */
- q15_t *pSrcBT = pScratch; /* input data matrix pointer for transpose */
- q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
- q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
- q15_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
- uint16_t col, i = 0U, row = numRowsB, colCnt; /* loop counters */
- arm_status status; /* status of matrix multiplication */
- q63_t sumReal, sumImag;
- #ifdef UNALIGNED_SUPPORT_DISABLE
- q15_t in; /* Temporary variable to hold the input value */
- q15_t a, b, c, d;
- #else
- q31_t in; /* Temporary variable to hold the input value */
- q31_t prod1, prod2;
- q31_t pSourceA, pSourceB;
- #endif
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif
- {
- /* Matrix transpose */
- do
- {
- /* Apply loop unrolling and exchange the columns with row elements */
- col = numColsB >> 2;
- /* The pointer px is set to starting address of the column being processed */
- px = pSrcBT + i;
- /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while (col > 0U)
- {
- #ifdef UNALIGNED_SUPPORT_DISABLE
- /* Read two elements from the row */
- in = *pInB++;
- *px = in;
- in = *pInB++;
- px[1] = in;
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB * 2;
- /* Read two elements from the row */
- in = *pInB++;
- *px = in;
- in = *pInB++;
- px[1] = in;
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB * 2;
- /* Read two elements from the row */
- in = *pInB++;
- *px = in;
- in = *pInB++;
- px[1] = in;
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB * 2;
- /* Read two elements from the row */
- in = *pInB++;
- *px = in;
- in = *pInB++;
- px[1] = in;
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB * 2;
- /* Decrement the column loop counter */
- col--;
- }
- /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- col = numColsB % 0x4U;
- while (col > 0U)
- {
- /* Read two elements from the row */
- in = *pInB++;
- *px = in;
- in = *pInB++;
- px[1] = in;
- #else
- /* Read two elements from the row */
- in = *__SIMD32(pInB)++;
- *__SIMD32(px) = in;
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB * 2;
- /* Read two elements from the row */
- in = *__SIMD32(pInB)++;
- *__SIMD32(px) = in;
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB * 2;
- /* Read two elements from the row */
- in = *__SIMD32(pInB)++;
- *__SIMD32(px) = in;
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB * 2;
- /* Read two elements from the row */
- in = *__SIMD32(pInB)++;
- *__SIMD32(px) = in;
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB * 2;
- /* Decrement the column loop counter */
- col--;
- }
- /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- col = numColsB % 0x4U;
- while (col > 0U)
- {
- /* Read two elements from the row */
- in = *__SIMD32(pInB)++;
- *__SIMD32(px) = in;
- #endif
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB * 2;
- /* Decrement the column loop counter */
- col--;
- }
- i = i + 2U;
- /* Decrement the row loop counter */
- row--;
- } while (row > 0U);
- /* Reset the variables for the usage in the following multiplication process */
- row = numRowsA;
- i = 0U;
- px = pDst->pData;
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- do
- {
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the transposed pSrcB data */
- pInB = pSrcBT;
- /* column loop */
- do
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sumReal = 0;
- sumImag = 0;
- /* Apply loop unrolling and compute 2 MACs simultaneously. */
- colCnt = numColsA >> 1;
- /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
- pInA = pSrcA->pData + i * 2;
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
- #ifdef UNALIGNED_SUPPORT_DISABLE
- /* read real and imag values from pSrcA buffer */
- a = *pInA;
- b = *(pInA + 1U);
- /* read real and imag values from pSrcB buffer */
- c = *pInB;
- d = *(pInB + 1U);
- /* Multiply and Accumlates */
- sumReal += (q31_t) a *c;
- sumImag += (q31_t) a *d;
- sumReal -= (q31_t) b *d;
- sumImag += (q31_t) b *c;
- /* read next real and imag values from pSrcA buffer */
- a = *(pInA + 2U);
- b = *(pInA + 3U);
- /* read next real and imag values from pSrcB buffer */
- c = *(pInB + 2U);
- d = *(pInB + 3U);
- /* update pointer */
- pInA += 4U;
- /* Multiply and Accumlates */
- sumReal += (q31_t) a *c;
- sumImag += (q31_t) a *d;
- sumReal -= (q31_t) b *d;
- sumImag += (q31_t) b *c;
- /* update pointer */
- pInB += 4U;
- #else
- /* read real and imag values from pSrcA and pSrcB buffer */
- pSourceA = *__SIMD32(pInA)++;
- pSourceB = *__SIMD32(pInB)++;
- /* Multiply and Accumlates */
- #ifdef ARM_MATH_BIG_ENDIAN
- prod1 = -__SMUSD(pSourceA, pSourceB);
- #else
- prod1 = __SMUSD(pSourceA, pSourceB);
- #endif
- prod2 = __SMUADX(pSourceA, pSourceB);
- sumReal += (q63_t) prod1;
- sumImag += (q63_t) prod2;
- /* read real and imag values from pSrcA and pSrcB buffer */
- pSourceA = *__SIMD32(pInA)++;
- pSourceB = *__SIMD32(pInB)++;
- /* Multiply and Accumlates */
- #ifdef ARM_MATH_BIG_ENDIAN
- prod1 = -__SMUSD(pSourceA, pSourceB);
- #else
- prod1 = __SMUSD(pSourceA, pSourceB);
- #endif
- prod2 = __SMUADX(pSourceA, pSourceB);
- sumReal += (q63_t) prod1;
- sumImag += (q63_t) prod2;
- #endif /* #ifdef UNALIGNED_SUPPORT_DISABLE */
- /* Decrement the loop counter */
- colCnt--;
- }
- /* process odd column samples */
- if ((numColsA & 0x1U) > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
- #ifdef UNALIGNED_SUPPORT_DISABLE
- /* read real and imag values from pSrcA and pSrcB buffer */
- a = *pInA++;
- b = *pInA++;
- c = *pInB++;
- d = *pInB++;
- /* Multiply and Accumlates */
- sumReal += (q31_t) a *c;
- sumImag += (q31_t) a *d;
- sumReal -= (q31_t) b *d;
- sumImag += (q31_t) b *c;
- #else
- /* read real and imag values from pSrcA and pSrcB buffer */
- pSourceA = *__SIMD32(pInA)++;
- pSourceB = *__SIMD32(pInB)++;
- /* Multiply and Accumlates */
- #ifdef ARM_MATH_BIG_ENDIAN
- prod1 = -__SMUSD(pSourceA, pSourceB);
- #else
- prod1 = __SMUSD(pSourceA, pSourceB);
- #endif
- prod2 = __SMUADX(pSourceA, pSourceB);
- sumReal += (q63_t) prod1;
- sumImag += (q63_t) prod2;
- #endif /* #ifdef UNALIGNED_SUPPORT_DISABLE */
- }
- /* Saturate and store the result in the destination buffer */
- *px++ = (q15_t) (__SSAT(sumReal >> 15, 16));
- *px++ = (q15_t) (__SSAT(sumImag >> 15, 16));
- /* Decrement the column loop counter */
- col--;
- } while (col > 0U);
- i = i + numColsA;
- /* Decrement the row loop counter */
- row--;
- } while (row > 0U);
- /* set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
- /* Return to application */
- return (status);
- }
- /**
- * @} end of MatrixMult group
- */
|