arm_convolve_HWC_q7_basic.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230
  1. /*
  2. * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Licensed under the Apache License, Version 2.0 (the License); you may
  7. * not use this file except in compliance with the License.
  8. * You may obtain a copy of the License at
  9. *
  10. * www.apache.org/licenses/LICENSE-2.0
  11. *
  12. * Unless required by applicable law or agreed to in writing, software
  13. * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  14. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  15. * See the License for the specific language governing permissions and
  16. * limitations under the License.
  17. */
  18. /* ----------------------------------------------------------------------
  19. * Project: CMSIS NN Library
  20. * Title: arm_convolve_HWC_q7_basic.c
  21. * Description: Q7 version of convolution
  22. *
  23. * $Date: 17. January 2018
  24. * $Revision: V.1.0.0
  25. *
  26. * Target Processor: Cortex-M cores
  27. *
  28. * -------------------------------------------------------------------- */
  29. #include "arm_math.h"
  30. #include "arm_nnfunctions.h"
  31. /**
  32. * @ingroup groupNN
  33. */
  34. /**
  35. * @addtogroup NNConv
  36. * @{
  37. */
  38. /**
  39. * @brief Basic Q7 convolution function
  40. * @param[in] Im_in pointer to input tensor
  41. * @param[in] dim_im_in input tensor dimention
  42. * @param[in] ch_im_in number of input tensor channels
  43. * @param[in] wt pointer to kernel weights
  44. * @param[in] ch_im_out number of filters, i.e., output tensor channels
  45. * @param[in] dim_kernel filter kernel size
  46. * @param[in] padding padding sizes
  47. * @param[in] stride convolution stride
  48. * @param[in] bias pointer to bias
  49. * @param[in] bias_shift amount of left-shift for bias
  50. * @param[in] out_shift amount of right-shift for output
  51. * @param[in,out] Im_out pointer to output tensor
  52. * @param[in] dim_im_out output tensor dimension
  53. * @param[in,out] bufferA pointer to buffer space for input
  54. * @param[in,out] bufferB pointer to buffer space for output
  55. * @return The function returns <code>ARM_MATH_SUCCESS</code>
  56. *
  57. * @details
  58. *
  59. * <b>Buffer size:</b>
  60. *
  61. * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
  62. *
  63. * bufferB size: 0
  64. *
  65. * This basic version is designed to work for any input tensor and weight
  66. * dimension.
  67. */
  68. arm_status
  69. arm_convolve_HWC_q7_basic(const q7_t * Im_in,
  70. const uint16_t dim_im_in,
  71. const uint16_t ch_im_in,
  72. const q7_t * wt,
  73. const uint16_t ch_im_out,
  74. const uint16_t dim_kernel,
  75. const uint16_t padding,
  76. const uint16_t stride,
  77. const q7_t * bias,
  78. const uint16_t bias_shift,
  79. const uint16_t out_shift,
  80. q7_t * Im_out,
  81. const uint16_t dim_im_out,
  82. q15_t * bufferA,
  83. q7_t * bufferB)
  84. {
  85. #if defined (ARM_MATH_DSP)
  86. /* Run the following code for Cortex-M4 and Cortex-M7 */
  87. int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
  88. /*
  89. * Here we use bufferA as q15_t internally as computation are done with q15_t level
  90. * im2col are done to output in q15_t format from q7_t input
  91. */
  92. q15_t *pBuffer = bufferA;
  93. q7_t *pOut = Im_out;
  94. /* This part implements the im2col function */
  95. for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
  96. {
  97. for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
  98. {
  99. for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
  100. {
  101. for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
  102. {
  103. if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
  104. {
  105. /* Filling 0 for out-of-bound paddings */
  106. /* arm_fill_q15(0, pBuffer, ch_im_in); */
  107. memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
  108. } else
  109. {
  110. /* Copying the pixel data to column */
  111. arm_q7_to_q15_no_shift((q7_t *)
  112. Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
  113. }
  114. pBuffer += ch_im_in;
  115. }
  116. }
  117. /* Computation is filed for every 2 columns */
  118. if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
  119. {
  120. pOut =
  121. arm_nn_mat_mult_kernel_q7_q15(wt, bufferA,
  122. ch_im_out,
  123. ch_im_in *
  124. dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
  125. /* counter reset */
  126. pBuffer = bufferA;
  127. }
  128. }
  129. }
  130. /* left-over because odd number of output pixels */
  131. if (pBuffer != bufferA)
  132. {
  133. const q7_t *pA = wt;
  134. int i;
  135. for (i = 0; i < ch_im_out; i++)
  136. {
  137. /* Load the accumulator with bias first */
  138. q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
  139. /* Point to the beging of the im2col buffer */
  140. q15_t *pB = bufferA;
  141. /* Each time it process 4 entries */
  142. uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
  143. while (colCnt)
  144. {
  145. q31_t inA1, inA2;
  146. q31_t inB1, inB2;
  147. pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2);
  148. inB1 = *__SIMD32(pB)++;
  149. sum = __SMLAD(inA1, inB1, sum);
  150. inB2 = *__SIMD32(pB)++;
  151. sum = __SMLAD(inA2, inB2, sum);
  152. colCnt--;
  153. }
  154. colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
  155. while (colCnt)
  156. {
  157. q7_t inA1 = *pA++;
  158. q15_t inB1 = *pB++;
  159. sum += inA1 * inB1;
  160. colCnt--;
  161. }
  162. *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
  163. }
  164. }
  165. #else
  166. /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
  167. uint16_t i, j, k, l, m, n;
  168. int conv_out;
  169. signed char in_row, in_col;
  170. for (i = 0; i < ch_im_out; i++)
  171. {
  172. for (j = 0; j < dim_im_out; j++)
  173. {
  174. for (k = 0; k < dim_im_out; k++)
  175. {
  176. conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
  177. for (m = 0; m < dim_kernel; m++)
  178. {
  179. for (n = 0; n < dim_kernel; n++)
  180. {
  181. // if-for implementation
  182. in_row = stride * j + m - padding;
  183. in_col = stride * k + n - padding;
  184. if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
  185. {
  186. for (l = 0; l < ch_im_in; l++)
  187. {
  188. conv_out +=
  189. Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
  190. l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
  191. n) * ch_im_in + l];
  192. }
  193. }
  194. }
  195. }
  196. Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
  197. }
  198. }
  199. }
  200. #endif /* ARM_MATH_DSP */
  201. /* Return to application */
  202. return ARM_MATH_SUCCESS;
  203. }
  204. /**
  205. * @} end of NNConv group
  206. */