123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_cmplx_mult_cmplx_f32.c
- * Description: Floating-point complex-by-complex multiplication
- *
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "arm_math.h"
- /**
- * @ingroup groupCmplxMath
- */
- /**
- * @defgroup CmplxByCmplxMult Complex-by-Complex Multiplication
- *
- * Multiplies a complex vector by another complex vector and generates a complex result.
- * The data in the complex arrays is stored in an interleaved fashion
- * (real, imag, real, imag, ...).
- * The parameter <code>numSamples</code> represents the number of complex
- * samples processed. The complex arrays have a total of <code>2*numSamples</code>
- * real values.
- *
- * The underlying algorithm is used:
- *
- * <pre>
- * for(n=0; n<numSamples; n++) {
- * pDst[(2*n)+0] = pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];
- * pDst[(2*n)+1] = pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];
- * }
- * </pre>
- *
- * There are separate functions for floating-point, Q15, and Q31 data types.
- */
- /**
- * @addtogroup CmplxByCmplxMult
- * @{
- */
- /**
- * @brief Floating-point complex-by-complex multiplication
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- * @return none.
- */
- void arm_cmplx_mult_cmplx_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- float32_t * pDst,
- uint32_t numSamples)
- {
- float32_t a1, b1, c1, d1; /* Temporary variables to store real and imaginary values */
- uint32_t blkCnt; /* loop counters */
- #if defined (ARM_MATH_DSP)
- /* Run the below code for Cortex-M4 and Cortex-M3 */
- float32_t a2, b2, c2, d2; /* Temporary variables to store real and imaginary values */
- float32_t acc1, acc2, acc3, acc4;
- /* loop Unrolling */
- blkCnt = numSamples >> 2U;
- /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while (blkCnt > 0U)
- {
- /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
- /* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
- a1 = *pSrcA; /* A[2 * i] */
- c1 = *pSrcB; /* B[2 * i] */
- b1 = *(pSrcA + 1); /* A[2 * i + 1] */
- acc1 = a1 * c1; /* acc1 = A[2 * i] * B[2 * i] */
- a2 = *(pSrcA + 2); /* A[2 * i + 2] */
- acc2 = (b1 * c1); /* acc2 = A[2 * i + 1] * B[2 * i] */
- d1 = *(pSrcB + 1); /* B[2 * i + 1] */
- c2 = *(pSrcB + 2); /* B[2 * i + 2] */
- acc1 -= b1 * d1; /* acc1 = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1] */
- d2 = *(pSrcB + 3); /* B[2 * i + 3] */
- acc3 = a2 * c2; /* acc3 = A[2 * i + 2] * B[2 * i + 2] */
- b2 = *(pSrcA + 3); /* A[2 * i + 3] */
- acc2 += (a1 * d1); /* acc2 = A[2 * i + 1] * B[2 * i] + A[2 * i] * B[2 * i + 1] */
- a1 = *(pSrcA + 4); /* A[2 * i + 4] */
- acc4 = (a2 * d2); /* acc4 = A[2 * i + 2] * B[2 * i + 3] */
- c1 = *(pSrcB + 4); /* B[2 * i + 4] */
- acc3 -= (b2 * d2); /* acc3 = A[2 * i + 2] * B[2 * i + 2] - A[2 * i + 3] * B[2 * i + 3] */
- *pDst = acc1; /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1] */
- b1 = *(pSrcA + 5); /* A[2 * i + 5] */
- acc4 += b2 * c2; /* acc4 = A[2 * i + 2] * B[2 * i + 3] + A[2 * i + 3] * B[2 * i + 2] */
- *(pDst + 1) = acc2; /* C[2 * i + 1] = A[2 * i + 1] * B[2 * i] + A[2 * i] * B[2 * i + 1] */
- acc1 = (a1 * c1);
- d1 = *(pSrcB + 5);
- acc2 = (b1 * c1);
- *(pDst + 2) = acc3;
- *(pDst + 3) = acc4;
- a2 = *(pSrcA + 6);
- acc1 -= (b1 * d1);
- c2 = *(pSrcB + 6);
- acc2 += (a1 * d1);
- b2 = *(pSrcA + 7);
- acc3 = (a2 * c2);
- d2 = *(pSrcB + 7);
- acc4 = (b2 * c2);
- *(pDst + 4) = acc1;
- pSrcA += 8U;
- acc3 -= (b2 * d2);
- acc4 += (a2 * d2);
- *(pDst + 5) = acc2;
- pSrcB += 8U;
- *(pDst + 6) = acc3;
- *(pDst + 7) = acc4;
- pDst += 8U;
- /* Decrement the numSamples loop counter */
- blkCnt--;
- }
- /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = numSamples % 0x4U;
- #else
- /* Run the below code for Cortex-M0 */
- blkCnt = numSamples;
- #endif /* #if defined (ARM_MATH_DSP) */
- while (blkCnt > 0U)
- {
- /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
- /* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
- a1 = *pSrcA++;
- b1 = *pSrcA++;
- c1 = *pSrcB++;
- d1 = *pSrcB++;
- /* store the result in the destination buffer. */
- *pDst++ = (a1 * c1) - (b1 * d1);
- *pDst++ = (a1 * d1) + (b1 * c1);
- /* Decrement the numSamples loop counter */
- blkCnt--;
- }
- }
- /**
- * @} end of CmplxByCmplxMult group
- */
|