/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_real_f32.c
* Description: Floating-point complex by real multiplication
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup CmplxByRealMult Complex-by-Real Multiplication
*
* Multiplies a complex vector by a real vector and generates a complex result.
* The data in the complex arrays is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* The parameter numSamples
represents the number of complex
* samples processed. The complex arrays have a total of 2*numSamples
* real values while the real array has a total of numSamples
* real values.
*
* The underlying algorithm is used:
*
*
* for(n=0; n* * There are separate functions for floating-point, Q15, and Q31 data types. */ /** * @addtogroup CmplxByRealMult * @{ */ /** * @brief Floating-point complex-by-real multiplication * @param[in] *pSrcCmplx points to the complex input vector * @param[in] *pSrcReal points to the real input vector * @param[out] *pCmplxDst points to the complex output vector * @param[in] numSamples number of samples in each vector * @return none. */ void arm_cmplx_mult_real_f32( float32_t * pSrcCmplx, float32_t * pSrcReal, float32_t * pCmplxDst, uint32_t numSamples) { float32_t in; /* Temporary variable to store input value */ uint32_t blkCnt; /* loop counters */ #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ float32_t inA1, inA2, inA3, inA4; /* Temporary variables to hold input data */ float32_t inA5, inA6, inA7, inA8; /* Temporary variables to hold input data */ float32_t inB1, inB2, inB3, inB4; /* Temporary variables to hold input data */ float32_t out1, out2, out3, out4; /* Temporary variables to hold output data */ float32_t out5, out6, out7, out8; /* Temporary variables to hold output data */ /* loop Unrolling */ blkCnt = numSamples >> 2U; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* C[2 * i] = A[2 * i] * B[i]. */ /* C[2 * i + 1] = A[2 * i + 1] * B[i]. */ /* read input from complex input buffer */ inA1 = pSrcCmplx[0]; inA2 = pSrcCmplx[1]; /* read input from real input buffer */ inB1 = pSrcReal[0]; /* read input from complex input buffer */ inA3 = pSrcCmplx[2]; /* multiply complex buffer real input with real buffer input */ out1 = inA1 * inB1; /* read input from complex input buffer */ inA4 = pSrcCmplx[3]; /* multiply complex buffer imaginary input with real buffer input */ out2 = inA2 * inB1; /* read input from real input buffer */ inB2 = pSrcReal[1]; /* read input from complex input buffer */ inA5 = pSrcCmplx[4]; /* multiply complex buffer real input with real buffer input */ out3 = inA3 * inB2; /* read input from complex input buffer */ inA6 = pSrcCmplx[5]; /* read input from real input buffer */ inB3 = pSrcReal[2]; /* multiply complex buffer imaginary input with real buffer input */ out4 = inA4 * inB2; /* read input from complex input buffer */ inA7 = pSrcCmplx[6]; /* multiply complex buffer real input with real buffer input */ out5 = inA5 * inB3; /* read input from complex input buffer */ inA8 = pSrcCmplx[7]; /* multiply complex buffer imaginary input with real buffer input */ out6 = inA6 * inB3; /* read input from real input buffer */ inB4 = pSrcReal[3]; /* store result to destination bufer */ pCmplxDst[0] = out1; /* multiply complex buffer real input with real buffer input */ out7 = inA7 * inB4; /* store result to destination bufer */ pCmplxDst[1] = out2; /* multiply complex buffer imaginary input with real buffer input */ out8 = inA8 * inB4; /* store result to destination bufer */ pCmplxDst[2] = out3; pCmplxDst[3] = out4; pCmplxDst[4] = out5; /* incremnet complex input buffer by 8 to process next samples */ pSrcCmplx += 8U; /* store result to destination bufer */ pCmplxDst[5] = out6; /* increment real input buffer by 4 to process next samples */ pSrcReal += 4U; /* store result to destination bufer */ pCmplxDst[6] = out7; pCmplxDst[7] = out8; /* increment destination buffer by 8 to process next sampels */ pCmplxDst += 8U; /* Decrement the numSamples loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4U; #else /* Run the below code for Cortex-M0 */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_DSP) */ while (blkCnt > 0U) { /* C[2 * i] = A[2 * i] * B[i]. */ /* C[2 * i + 1] = A[2 * i + 1] * B[i]. */ in = *pSrcReal++; /* store the result in the destination buffer. */ *pCmplxDst++ = (*pSrcCmplx++) * (in); *pCmplxDst++ = (*pSrcCmplx++) * (in); /* Decrement the numSamples loop counter */ blkCnt--; } } /** * @} end of CmplxByRealMult group */