123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294 |
- /* ----------------------------------------------------------------------
- * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
- *
- * $Date: 31. July 2014
- * $Revision: V1.4.4
- *
- * Project: CMSIS DSP Library
- * Title: arm_mat_mult_q31.c
- *
- * Description: Q31 matrix multiplication.
- *
- * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * - Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * - Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * - Neither the name of ARM LIMITED nor the names of its contributors
- * may be used to endorse or promote products derived from this
- * software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- * -------------------------------------------------------------------- */
- #include "arm_math.h"
- /**
- * @ingroup groupMatrix
- */
- /**
- * @addtogroup MatrixMult
- * @{
- */
- /**
- * @brief Q31 matrix multiplication
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * @details
- * <b>Scaling and Overflow Behavior:</b>
- *
- * \par
- * The function is implemented using an internal 64-bit accumulator.
- * The accumulator has a 2.62 format and maintains full precision of the intermediate
- * multiplication results but provides only a single guard bit. There is no saturation
- * on intermediate additions. Thus, if the accumulator overflows it wraps around and
- * distorts the result. The input signals should be scaled down to avoid intermediate
- * overflows. The input is thus scaled down by log2(numColsA) bits
- * to avoid overflows, as a total of numColsA additions are performed internally.
- * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
- *
- * \par
- * See <code>arm_mat_mult_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
- *
- */
- arm_status arm_mat_mult_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
- {
- q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
- q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
- q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- q31_t *pOut = pDst->pData; /* output data matrix pointer */
- q31_t *px; /* Temporary output data matrix pointer */
- q63_t sum; /* Accumulator */
- uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- #ifndef ARM_MATH_CM0_FAMILY
- /* Run the below code for Cortex-M4 and Cortex-M3 */
- uint16_t col, i = 0u, j, row = numRowsA, colCnt; /* loop counters */
- arm_status status; /* status of matrix multiplication */
- q31_t a0, a1, a2, a3, b0, b1, b2, b3;
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- do
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + i;
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pIn2 = pSrcB->pData;
- j = 0u;
- /* column loop */
- do
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sum = 0;
- /* Initiate the pointer pIn1 to point to the starting address of pInA */
- pIn1 = pInA;
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- colCnt = numColsA >> 2;
- /* matrix multiplication */
- while(colCnt > 0u)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
- /* Perform the multiply-accumulates */
- b0 = *pIn2;
- pIn2 += numColsB;
- a0 = *pIn1++;
- a1 = *pIn1++;
- b1 = *pIn2;
- pIn2 += numColsB;
- b2 = *pIn2;
- pIn2 += numColsB;
- sum += (q63_t) a0 *b0;
- sum += (q63_t) a1 *b1;
- a2 = *pIn1++;
- a3 = *pIn1++;
- b3 = *pIn2;
- pIn2 += numColsB;
- sum += (q63_t) a2 *b2;
- sum += (q63_t) a3 *b3;
- /* Decrement the loop counter */
- colCnt--;
- }
- /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- colCnt = numColsA % 0x4u;
- while(colCnt > 0u)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
- /* Perform the multiply-accumulates */
- sum += (q63_t) * pIn1++ * *pIn2;
- pIn2 += numColsB;
- /* Decrement the loop counter */
- colCnt--;
- }
- /* Convert the result from 2.62 to 1.31 format and store in destination buffer */
- *px++ = (q31_t) (sum >> 31);
- /* Update the pointer pIn2 to point to the starting address of the next column */
- j++;
- pIn2 = (pSrcB->pData) + j;
- /* Decrement the column loop counter */
- col--;
- } while(col > 0u);
- #else
- /* Run the below code for Cortex-M0 */
- q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- uint16_t col, i = 0u, row = numRowsA, colCnt; /* loop counters */
- arm_status status; /* status of matrix multiplication */
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- do
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + i;
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pIn2 = pSrcB->pData;
- /* column loop */
- do
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sum = 0;
- /* Initiate the pointer pIn1 to point to the starting address of pInA */
- pIn1 = pInA;
- /* Matrix A columns number of MAC operations are to be performed */
- colCnt = numColsA;
- /* matrix multiplication */
- while(colCnt > 0u)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
- /* Perform the multiply-accumulates */
- sum += (q63_t) * pIn1++ * *pIn2;
- pIn2 += numColsB;
- /* Decrement the loop counter */
- colCnt--;
- }
- /* Convert the result from 2.62 to 1.31 format and store in destination buffer */
- *px++ = (q31_t) clip_q63_to_q31(sum >> 31);
- /* Decrement the column loop counter */
- col--;
- /* Update the pointer pIn2 to point to the starting address of the next column */
- pIn2 = pInB + (numColsB - col);
- } while(col > 0u);
- #endif
- /* Update the pointer pInA to point to the starting address of the next row */
- i = i + numColsB;
- pInA = pInA + numColsA;
- /* Decrement the row loop counter */
- row--;
- } while(row > 0u);
- /* set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
- /* Return to application */
- return (status);
- }
- /**
- * @} end of MatrixMult group
- */
|