
August 2012 Doc ID 022183 Rev 3 1/30

STM32F40x and STM32F41x
Errata sheet

STM32F405/407xx and STM32F415/417xx
 device limitations

Silicon identification
This errata sheet applies to the revision A and Z of STMicroelectronics
STM32F405xx/STM32F407xx and STM32F415xx/STM32F417xx microcontroller families.
In this document, they will be referred to as STM32F40x and STM32F41x, respectively,
unless otherwise specified.

The STM32F40x and STM32F41x families feature an ARM™ 32-bit Cortex®M4 core with
FPU, for which an errata notice is also available (see Section 1 for details). It will be referred
to as Cortex-M4F throughout this document.

The full list of part numbers is shown in Table 2. The products are identifiable as shown in
Table 1:

● by the revision code marked below the order code on the device package

● by the last three digits of the Internal order code printed on the box label

Table 1. Device identification(1)

1. The REV_ID bits in the DBGMCU_IDCODE register show the revision code of the device (see the
STM32F40x and STM32F41x reference manual for details on how to find the revision code).

Order code Revision code marked on device(2)

2. Refer to Appendix A: Revision code on device marking for details on how to identify the revision code and
the date code on the different packages.

STM32F405xx, STM32F407xx
“A”, “Z”

STM32F415xx, STM32F417xx

Table 2. Device summary

Reference Part number

STM32F405xx STM32F405RG, STM32F405VG, STM32F405ZG

STM32F407xx
STM32F407IG, STM32F407VG, STM32F407ZG,
STM32F407ZE, STM32F407IE, STM32F407VE

STM32F415xx STM32F415RG, STM32F415VG, STM32F415ZG

STM32F417xx
STM32F417VG, STM32F417IG, STM32F417ZG, STM32F417VE,
STM32F417ZE, STM32F417IE

www.st.com

http://www.st.com

Contents STM32F40x and STM32F41x

2/30 Doc ID 022183 Rev 3

Contents

1 ARM™ 32-bit Cortex®M4F limitations . 6

1.1 CortexM4F interrupted loads to stack pointer can cause
erroneous behavior . 6

2 STM32F40x and STM32F41x silicon limitations 7

2.1 System limitations . 9

2.1.1 ART Accelerator prefetch queue instruction is not supported 9

2.1.2 MCU device ID is incorrect . 9

2.1.3 Debugging Stop mode and system tick timer . 9

2.1.4 Debugging Stop mode with WFE entry . 10

2.1.5 Full JTAG configuration without NJTRST pin cannot be used 10

2.1.6 PDR_ON pin not available on LQFP100 package
for revision Z devices . 10

2.1.7 Incorrect BOR option byte when consecutively programming
BOR option byte . 11

2.1.8 Configuration of PH10 and PI10 as external interrupts is erroneous . . . 11

2.1.9 DMA2 data corruption when managing AHB and APB peripherals in a
concurrent way . 11

2.1.10 Slowing down APB clock during a DMA transfer 12

2.1.11 MPU attribute to RTC and IWDG registers could be managed
incorrectly . 12

2.1.12 Delay after an RCC peripheral clock enabling . 12

2.1.13 Battery charge monitoring lower than 2.4 Volts 13

2.1.14 Internal noise impacting the ADC accuracy . 13

2.2 IWDG peripheral limitation . 13

2.2.1 RVU and PVU flags are not reset in STOP mode 13

2.3 I2C peripheral limitations . 14

2.3.1 SMBus standard not fully supported . 14

2.3.2 Start cannot be generated after a misplaced Stop 14

2.3.3 Mismatch on the “Setup time for a repeated Start condition” timing
parameter . 14

2.3.4 Data valid time (tVD;DAT) violated without the OVR flag being set 15

2.4 I2S peripheral limitation . 15

2.4.1 In I2S slave mode, WS level must be set by the external master
when enabling the I2S . 15

2.5 USART peripheral limitations . 16

 STM32F40x and STM32F41x Contents

Doc ID 022183 Rev 3 3/30

2.5.1 Idle frame is not detected if receiver clock speed is deviated 16

2.5.2 In full duplex mode, the Parity Error (PE) flag can be cleared by
writing to the data register . 16

2.5.3 Parity Error (PE) flag is not set when receiving in Mute mode
using address mark detection . 16

2.5.4 Break frame is transmitted regardless of nCTS input line status 16

2.5.5 nRTS signal abnormally driven low after a protocol violation 17

2.6 OTG_FS peripheral limitations . 17

2.6.1 Data in RxFIFO is overwritten when all channels are disabled
simultaneously . 17

2.6.2 OTG host blocks the receive channel when receiving IN packets and no
TxFIFO is configured . 18

2.6.3 Host channel-halted interrupt not generated when the channel is
disabled . 18

2.6.4 Error in software-read OTG_FS_DCFG register values 18

2.7 Ethernet peripheral limitations . 18

2.7.1 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6 packets
without TCP, UDP or ICMP payloads . 18

2.7.2 The Ethernet MAC processes invalid extension headers in the received
IPv6 frames . 19

2.7.3 MAC stuck in the Idle state on receiving the TxFIFO flush command
exactly 1 clock cycle after a transmission completes 19

2.7.4 Transmit frame data corruption . 20

2.8 FSMC peripheral limitation . 20

2.8.1 Dummy read cycles inserted when reading synchronous memories . . . 20

2.8.2 FSMC synchronous mode and NWAIT signal disabled 20

2.9 SDIO peripheral limitations . 21

2.9.1 SDIO HW flow control . 21

2.9.2 Wrong CCRCFAIL status after a response without CRC is received . . . 21

2.9.3 SDIO clock divider BYPASS mode may not work properly 21

2.9.4 Data corruption in SDIO clock dephasing (NEGEDGE) mode 21

2.9.5 CE-ATA multiple write command and card busy signal management . . 22

2.10 DAC limitations . 22

2.10.1 DMA underrun flag management . 22

2.10.2 DMA request not automatically cleared by DMAEN=0 22

Appendix A Revision code on device marking . 24

Revision history . 29

List of tables STM32F40x and STM32F41x

4/30 Doc ID 022183 Rev 3

List of tables

Table 1. Device identification . 1
Table 2. Device summary . 1
Table 3. CortexM4F core limitations and impact on microcontroller behavior 6
Table 4. Summary of silicon limitations . 7
Table 5. Document revision history . 29

 STM32F40x and STM32F41x List of figures

Doc ID 022183 Rev 3 5/30

List of figures

Figure 1. UFBGA176 top package view. 24
Figure 2. LQFP176 top package view . 25
Figure 3. LQFP144 top package view . 26
Figure 4. LQFP100 top package view . 27
Figure 5. LQFP64 top package view . 28

ARM™ 32-bit Cortex®M4F limitations STM32F40x and STM32F41x

6/30 Doc ID 022183 Rev 3

1 ARM™ 32-bit Cortex®M4F limitations

An errata notice of the STM32F40x and STM32F41x core is available from the following web
address: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b_errata_01/index.html.

All the described limitations are minor and related to the revision r0p1-v1 of the CortexM4
core. Table 3 summarizes these limitations and their implications on the behavior of
STM32F40x and STM32F41x devices.

1.1 CortexM4F interrupted loads to stack pointer can cause
erroneous behavior

Description

An interrupt occurring during the data-phase of a single word load to the stack pointer
(SP/R13) can cause an erroneous behavior of the device. In addition, returning from the
interrupt results in the load instruction being executed an additional time.

For all the instructions performing an update of the base register, the base register is
erroneously updated on each execution, resulting in the stack pointer being loaded from an
incorrect memory location.

The instructions affected by this limitation are the following:

● LDR SP, [Rn],#imm

● LDR SP, [Rn,#imm]!

● LDR SP, [Rn,#imm]

● LDR SP, [Rn]

● LDR SP, [Rn,Rm]

Workaround

As of today, no compiler generates these particular instructions. This limitation can only
occur with hand-written assembly code.

Both issues can be solved by replacing the direct load to the stack pointer by an
intermediate load to a general-purpose register followed by a move to the stack pointer.

Example:

Replace LDR SP, [R0] by
LDR R2,[R0]
MOV SP,R2

Table 3. CortexM4F core limitations and impact on microcontroller behavior

ARM ID
ARM

category
ARM summary of errata

Impact on STM32F40x
and STM32F41x

752419 Cat 2
Interrupted loads to SP can cause erroneous
behavior

Minor

 STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

Doc ID 022183 Rev 3 7/30

2 STM32F40x and STM32F41x silicon limitations

Table 4 gives quick references to all documented limitations.

Legend for Table 4: A = workaround available; N = no workaround available; P = partial
workaround available, ‘-’ and grayed = fixed.

Table 4. Summary of silicon limitations

Links to silicon limitations Revision A Revision Z

Section 2.1:
System limitations

Section 2.1.1: ART Accelerator prefetch queue instruction is not
supported

N -

Section 2.1.2: MCU device ID is incorrect A -

Section 2.1.3: Debugging Stop mode and system tick timer A A

Section 2.1.4: Debugging Stop mode with WFE entry A A

Section 2.1.5: Full JTAG configuration without NJTRST pin cannot
be used

A A

Section 2.1.6: PDR_ON pin not available on LQFP100 package for
revision Z devices

- N

Section 2.1.7: Incorrect BOR option byte when consecutively
programming BOR option byte

A A

Section 2.1.8: Configuration of PH10 and PI10 as external
interrupts is erroneous

N N

Section 2.1.9: DMA2 data corruption when managing AHB and APB
peripherals in a concurrent way

A A

Section 2.1.10: Slowing down APB clock during a DMA transfer A A

Section 2.1.11: MPU attribute to RTC and IWDG registers could be
managed incorrectly

A A

Section 2.1.12: Delay after an RCC peripheral clock enabling A A

Section 2.1.13: Battery charge monitoring lower than 2.4 Volts P P

Section 2.1.14: Internal noise impacting the ADC accuracy A A

Section 2.2:
IWDG peripheral
limitation

Section 2.2.1: RVU and PVU flags are not reset in STOP mode A A

Section 2.3: I2C
peripheral
limitations

Section 2.3.1: SMBus standard not fully supported A A

Section 2.3.2: Start cannot be generated after a misplaced Stop A A

Section 2.3.3: Mismatch on the “Setup time for a repeated Start
condition” timing parameter

A A

Section 2.3.4: Data valid time (tVD;DAT) violated without the OVR flag
being set

A A

Section 2.4: I2S
peripheral
limitation

Section 2.4.1: In I2S slave mode, WS level must be set by the
external master when enabling the I2S

A A

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

8/30 Doc ID 022183 Rev 3

Section 2.5:
USART peripheral
limitations

Section 2.5.1: Idle frame is not detected if receiver clock speed is
deviated

N N

Section 2.5.2: In full duplex mode, the Parity Error (PE) flag can be
cleared by writing to the data register

A A

Section 2.5.3: Parity Error (PE) flag is not set when receiving in
Mute mode using address mark detection

N N

Section 2.5.4: Break frame is transmitted regardless of nCTS input
line status

N N

Section 2.5.5: nRTS signal abnormally driven low after a protocol
violation

A A

Section 2.6:
OTG_FS
peripheral
limitations

Section 2.6.1: Data in RxFIFO is overwritten when all channels are
disabled simultaneously

A A

Section 2.6.2: OTG host blocks the receive channel when receiving
IN packets and no TxFIFO is configured

A A

Section 2.6.3: Host channel-halted interrupt not generated when the
channel is disabled

A A

Section 2.6.4: Error in software-read OTG_FS_DCFG register
values

A A

Section 2.7:
Ethernet
peripheral
limitations

Section 2.7.1: Incorrect layer 3 (L3) checksum is inserted in
transmitted IPv6 packets without TCP, UDP or ICMP payloads

A A

Section 2.7.2: The Ethernet MAC processes invalid extension
headers in the received IPv6 frames

N N

Section 2.7.3: MAC stuck in the Idle state on receiving the TxFIFO
flush command exactly 1 clock cycle after a transmission completes

A A

Section 2.7.4: Transmit frame data corruption A A

Section 2.8:
FSMC peripheral
limitation

Section 2.8.1: Dummy read cycles inserted when reading
synchronous memories

N N

Section 2.8.2: FSMC synchronous mode and NWAIT signal
disabled

A A

Section 2.9: SDIO
peripheral
limitations

Section 2.9.1: SDIO HW flow control N N

Section 2.9.2: Wrong CCRCFAIL status after a response without
CRC is received

A A

Section 2.9.3: SDIO clock divider BYPASS mode may not work
properly

A A

Section 2.9.4: Data corruption in SDIO clock dephasing
(NEGEDGE) mode

N N

Section 2.9.5: CE-ATA multiple write command and card busy signal
management

A A

Section 2.10: DAC
limitations

Section 2.10.1: DMA underrun flag management A A

Section 2.10.2: DMA request not automatically cleared by
DMAEN=0

A A

Table 4. Summary of silicon limitations (continued)

Links to silicon limitations Revision A Revision Z

 STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

Doc ID 022183 Rev 3 9/30

2.1 System limitations

2.1.1 ART Accelerator prefetch queue instruction is not supported

Description

The ART Accelerator prefetch queue instruction is not supported on revision A devices.

This limitation does not prevent the ART Accelerator from using the cache enable/disable
capability and the selection of the number of wait states according to the system frequency.

Workaround

● Revision A devices: none

● Revision Z devices: fixed.

2.1.2 MCU device ID is incorrect

Description

On revision A devices, the STM32F40x and STM32F41x have the same MCU device ID as
the STM32F20x and STM32F21x devices. The device ID can be read from address
0xE004 2000.

Workaround

● Revision A devices

To differentiate the STM32F4xxx from the STM32F2xxx series, read the MCU device ID
and the Core Device.

– For STM32F2xxx

MCU device ID = STM32F2xxx device ID

Core Device = CortexM3

– For STM32F4xxx

MCU device ID = STM32F4xxx device ID

Core Device = CortexM4

● Revision Z devices: fixed.

2.1.3 Debugging Stop mode and system tick timer

Description

If the system tick timer interrupt is enabled during the Stop mode debug (DBG_STOP bit set
in the DBGMCU_CR register), it will wake up the system from Stop mode.

Workaround

To debug the Stop mode, disable the system tick timer interrupt.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

10/30 Doc ID 022183 Rev 3

2.1.4 Debugging Stop mode with WFE entry

Description

When the Stop debug mode is enabled (DBG_STOP bit set in the DBGMCU_CR register),
this allows software debugging during Stop mode.

However, if the application software uses the WFE instruction to enter Stop mode, after
wakeup some instructions could be missed if the WFE is followed by sequential instructions.
This affects only Stop debug mode with WFE entry.

Workaround

To debug Stop mode with WFE entry, the WFE instruction must be inside a dedicated
function with 1 instruction (NOP) between the execution of the WFE and the Bx LR.

Example:

__asm void _WFE(void) {

WFE

NOP

BX lr }

2.1.5 Full JTAG configuration without NJTRST pin cannot be used

Description

When using the JTAG debug port in debug mode, the connection with the debugger is lost if
the NJTRST pin (PB4) is used as a GPIO. Only the 4-wire JTAG port configuration is
impacted.

Workaround

Use the SWD debug port instead of the full 4-wire JTAG port.

2.1.6 PDR_ON pin not available on LQFP100 package
for revision Z devices

Description

On revision-Z devices, the PDR_ON pin (pin 99) available on LQFP100 package is replaced
by VSS. As a consequence, the POR/PDR feature is always enabled.

Workaround

● Applications using on revision A devices with PDR_ON pin connected to VDD
(POR/PDR feature enabled)

Connect the former PDR_ON pin to VSS on revision Z devices.

● Applications using revision A devices with PDR_ON pin connected to VSS (POR/PDR
feature disabled)

No modification is required when migrating to revision Z devices. However, it is no
longer possible to supply the product from a 1.7 V VDD on LQFP100 package since
VDD minimum value is 1.8 V when the POR/PDR feature is enabled.

 STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

Doc ID 022183 Rev 3 11/30

2.1.7 Incorrect BOR option byte when consecutively programming
BOR option byte

Description

When the AHB prescaler is greater than 2, and consecutive BOR option byte program
operations are performed without resetting the device, then an incorrect value might be
programmed in the BOR option byte.

Workaround

To program consecutive BOR option byte values, either configure the AHB prescaler to 1 or
2, or perform a system reset between each BOR option byte program operation.

2.1.8 Configuration of PH10 and PI10 as external interrupts is erroneous

Description

PH10 or PI10 is selected as the source for the EXTI10 external interrupt by setting bits
EXTI10[3:0] of SYSCFG_EXTICR3 register to 0x0111 or 0x1000, respectively. However,
this erroneous operation enables PH2 and PI2 as external interrupt inputs.

As a result, it is not possible to use PH10/PI10 as interrupt sources if PH2/PI2 are not
selected as the interrupt source, as well. This means that bits EXTI10[3:0] of
SYSCFG_EXTICR3 register and bits EXTI2[3:0] of SYSCFG_EXTICR1 should be
programmed to the same value:

● 0x0111 to select PH10/PH2

● 0x1000 to select PI10/PI2

Workaround

None.

2.1.9 DMA2 data corruption when managing AHB and APB peripherals in a
concurrent way

Description

When the DMA2 is managing AHB Peripherals (only peripherals embedding FIFOs) and
also APB transfers in a concurrent way, this generates a data corruption (multiple DMA
access).

When this condition occurs:

● The data transferred by the DMA to the AHB peripherals could be corrupted in case of
a FIFO target.

● For memories, it will result in multiple access (not visible by the Software) and the data
is not corrupted.

● For the DCMI, a multiple unacknowledged request could be generated, which implies
an unknown behavior of the DMA.

AHB peripherals embedding FIFO are DCMI, CRYPTO, and HASH. On sales types without
CRYPTO, only the DCMI is impacted. External FIFO controlled by the FSMC is also
impacted.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

12/30 Doc ID 022183 Rev 3

Workaround

Avoid concurrent AHB (DCMI, CRYPTO, HASH, FSMC with external FIFO) and APB
transfer management using the DMA2.

2.1.10 Slowing down APB clock during a DMA transfer

Description

When the CPU modifies the APB clock (slows down the clock: changes AHB/APB prescaler
from 1 to 2, 1 to 4, 1 to 8 or 1 to 16) while the DMA is performing a write access to the same
APB peripherals, the current DMA transfer will be blocked. Only system reset will recover.

Workaround

Before slowing down the APB clock, wait until the end of the DMA transfer on this APB.

2.1.11 MPU attribute to RTC and IWDG registers could be managed
incorrectly

Description

If the MPU is used and the non bufferable attribute is set to the RTC or IWDG memory map
region, the CPU access to the RTC or IWDG registers could be treated as bufferable,
provided that there is no APB prescaler configured (AHB/APB prescaler is equal to 1).

Workaround

If the non bufferable attribute is required for these registers, the software could perform a
read after the write to guaranty the completion of the write access.

2.1.12 Delay after an RCC peripheral clock enabling

Description

A delay between an RCC peripheral clock enable and the effective peripheral enabling
should be taken into account in order to manage the peripheral read/write to registers.

This delay depends on the peripheral’s mapping:

● If the peripheral is mapped on AHB: the delay should be equal to 2 AHB cycles.

● If the peripheral is mapped on APB: the delay should be equal to 1 + (AHB/APB
prescaler) cycles.

Workarounds

1. Use the DSB instruction to stall the Cortex-M CPU pipeline until the instruction is
completed.

2. Insert “n” NOPs between the RCC enable bit write and the peripheral register writes
(n = 2 for AHB peripherals, n = 1 + AHB/APB prescaler in case of APB peripherals).

 STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

Doc ID 022183 Rev 3 13/30

2.1.13 Battery charge monitoring lower than 2.4 Volts

Description

If (VDD = VDDA) is lower than or equal to 2.4 V, the VBAT conversion correctness is not
guaranteed in full temperature and voltage ranges. When VBAT is set, the voltage divider
bridge is enabled and VBAT/2 is connected to the ADC input. In order to monitor the battery
charge correctly, the input of the ADC must not be higher than (VDDA - 0.6 V).

Thus, VBAT/2 < VDD – 0.6 V implies that VDD > 2.4 V.

Workaround

None. (VDD = VDDA) should be greater than 2.4 V.

2.1.14 Internal noise impacting the ADC accuracy

Description

An internal noise generated on VDD supplies and propagated internally may impact the ADC
accuracy.

This noise is always active whatever the power mode of the MCU (RUN or Sleep).

Workarounds

Two steps could be followed to adapt the accuracy level to the application requirements:

1. Configure the Flash ART as Prefetch OFF and (Data + Instruction) cache ON.

2. Use averaging and filtering algorithms on ADC output codes.

For more workaround details of this limitation, please refer to AN4073.

2.2 IWDG peripheral limitation

2.2.1 RVU and PVU flags are not reset in STOP mode

Description

The RVU and PVU flags of the IWDG_SR register are set by hardware after a write access
to the IWDG_RLR and the IWDG_PR registers, respectively. If the Stop mode is entered
immediately after the write access, the RVU and PVU flags are not reset by hardware.

Before performing a second write operation to the IWDG_RLR or the IWDG_PR register, the
application software must wait for the RVU or PVU flag to be reset. However, since the
RVU/PVU bit is not reset after exiting the Stop mode, the software goes into an infinite loop
and the independent watchdog (IWDG) generates a reset after the programmed timeout
period.

Workaround

Wait until the RVU or PVU flag of the IWDG_SR register is reset before entering the Stop
mode.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

14/30 Doc ID 022183 Rev 3

2.3 I2C peripheral limitations

2.3.1 SMBus standard not fully supported

Description

The I2C peripheral is not fully compliant with the SMBus v2.0 standard since It does not
support the capability to NACK an invalid byte/command.

Workarounds

A higher-level mechanism should be used to verify that a write operation is being performed
correctly at the target device, such as:

1. Using the SMBAL pin if supported by the host

2. the alert response address (ARA) protocol

3. the Host notify protocol

2.3.2 Start cannot be generated after a misplaced Stop

Description

If a master generates a misplaced Stop on the bus (bus error), the peripheral cannot
generate a Start anymore.

Workaround

In the I²C standard, it is allowed to send a Stop only at the end of the full byte (8 bits +
acknowledge), so this scenario is not allowed. Other derived protocols like CBUS allow it,
but they are not supported by the I²C peripheral.

A software workaround consists in asserting the software reset using the SWRST bit in the
I2C_CR1 control register.

2.3.3 Mismatch on the “Setup time for a repeated Start condition” timing
parameter

Description

In case of a repeated Start, the “Setup time for a repeated Start condition” (named Tsu;sta
in the I²C specification) can be slightly violated when the I²C operates in Master Standard
mode at a frequency between 88 kHz and 100 kHz.

The issue can occur only in the following configuration:

● in Master mode

● in Standard mode at a frequency between 88 kHz and 100 kHz (no issue in Fast-mode)

● SCL rise time:

– If the slave does not stretch the clock and the SCL rise time is more than 300 ns (if
the SCL rise time is less than 300 ns, the issue cannot occur)

– If the slave stretches the clock

The setup time can be violated independently of the APB peripheral frequency.

 STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

Doc ID 022183 Rev 3 15/30

Workaround

Reduce the frequency down to 88 kHz or use the I²C Fast-mode, if supported by the slave.

2.3.4 Data valid time (tVD;DAT) violated without the OVR flag being set

Description

The data valid time (tVD;DAT, tVD;ACK) described by the I²C standard can be violated (as well
as the maximum data hold time of the current data (tHD;DAT)) under the conditions described
below. This violation cannot be detected because the OVR flag is not set (no transmit buffer
underrun is detected).

This issue can occur only under the following conditions:

● in Slave transmit mode

● with clock stretching disabled (NOSTRETCH=1)

● if the software is late to write the DR data register, but not late enough to set the OVR
flag (the data register is written before)

Workaround

If the master device allows it, use the clock stretching mechanism by programming the bit
NOSTRETCH=0 in the I2C_CR1 register.

If the master device does not allow it, ensure that the software is fast enough when polling
the TXE or ADDR flag to immediately write to the DR data register. For instance, use an
interrupt on the TXE or ADDR flag and boost its priority to the higher level.

2.4 I2S peripheral limitation

2.4.1 In I2S slave mode, WS level must be set by the external master
when enabling the I2S

Description

In slave mode, the WS signal level is used only to start the communication. If the I2S (in
slave mode) is enabled while the master is already sending the clock and the WS signal
level is low (for I2S protocol) or is high (for the LSB or MSB-justified mode), the slave starts
communicating data immediately. In this case, the master and slave will be desynchronized
throughout the whole communication.

Workaround

The I2S peripheral must be enabled when the external master sets the WS line at:

● High level when the I2S protocol is selected.

● Low level when the LSB or MSB-justified mode is selected.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

16/30 Doc ID 022183 Rev 3

2.5 USART peripheral limitations

2.5.1 Idle frame is not detected if receiver clock speed is deviated

Description

If the USART receives an idle frame followed by a character, and the clock of the transmitter
device is faster than the USART receiver clock, the USART receive signal falls too early
when receiving the character start bit, with the result that the idle frame is not detected
(IDLE flag is not set).

Workaround

None.

2.5.2 In full duplex mode, the Parity Error (PE) flag can be cleared by
writing to the data register

Description

In full duplex mode, when the Parity Error flag is set by the receiver at the end of a reception,
it may be cleared while transmitting by reading the USART_SR register to check the TXE or
TC flags and writing data to the data register.

Consequently, the software receiver can read the PE flag as '0' even if a parity error
occurred.

Workaround

The Parity Error flag should be checked after the end of reception and before transmission.

2.5.3 Parity Error (PE) flag is not set when receiving in Mute mode
using address mark detection

Description

The USART receiver is in Mute mode and is configured to exit the Mute mode using the
address mark detection. When the USART receiver recognizes a valid address with a parity
error, it exits the Mute mode without setting the Parity Error flag.

Workaround

None.

2.5.4 Break frame is transmitted regardless of nCTS input line status

Description

When CTS hardware flow control is enabled (CTSE = 1) and the Send Break bit (SBK) is
set, the transmitter sends a break frame at the end of the current transmission regardless of
nCTS input line status.

Consequently, if an external receiver device is not ready to accept a frame, the transmitted
break frame is lost.

 STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

Doc ID 022183 Rev 3 17/30

Workaround

None.

2.5.5 nRTS signal abnormally driven low after a protocol violation

Description

When RTS hardware flow control is enabled, the nRTS signal goes high when data is
received. If this data was not read and new data is sent to the USART (protocol violation),
the nRTS signal goes back to low level at the end of this new data.

Consequently, the sender gets the wrong information that the USART is ready to receive
further data.

On USART side, an overrun is detected, which indicates that data has been lost.

Workaround

Workarounds are required only if the other USART device violates the communication
protocol, which is not the case in most applications.

Two workarounds can be used:

● After data reception and before reading the data in the data register, the software takes
over the control of the nRTS signal as a GPIO and holds it high as long as needed. If
the USART device is not ready, the software holds the nRTS pin high, and releases it
when the device is ready to receive new data.

● The time required by the software to read the received data must always be lower than
the duration of the second data reception. For example, this can be ensured by treating
all the receptions by DMA mode.

2.6 OTG_FS peripheral limitations

2.6.1 Data in RxFIFO is overwritten when all channels are disabled
simultaneously

Description

If the available RxFIFO is just large enough to host 1 packet + its data status, and is
currently occupied by the last received data + its status and, at the same time, the
application requests that more IN channels be disabled, the OTG_FS peripheral does not
first check for available space before inserting the disabled status of the IN channels. It just
inserts them by overwriting the existing data payload.

Workaround

Use one of the following recommendations:

1. Configure the RxFIFO to host a minimum of 2 × MPSIZ + 2 × data status entries.

2. The application has to check the RXFLVL bit (RxFIFO non-empty) in the
OTG_FS_GINTSTS register before disabling each IN channel. If this bit is not set, then
the application can disable an IN channel at a time. Each time the application disables
an IN channel, however, it first has to check that the RXFLVL bit = 0 condition is true.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

18/30 Doc ID 022183 Rev 3

2.6.2 OTG host blocks the receive channel when receiving IN packets and no
TxFIFO is configured

Description

When receiving data, the OTG_FS core erroneously checks for available TxFIFO space
when it should only check for RxFIFO space. If the OTG_FS core cannot see any space
allocated for data transmission, it blocks the reception channel and no data is received.

Workaround

Set at least one TxFIFO equal to the maximum packet size. In this way, the host application,
which intends to supports only IN traffic, also has to allocate some space for the TxFIFO.

Since a USB host is expected to support any kind of connected endpoint, it is good practice
to always configure enough TxFIFO space for OUT endpoints.

2.6.3 Host channel-halted interrupt not generated when the channel is
disabled

Description

When the application enables, then immediately disables the host channel before the
OTG_FS host has had time to begin the transfer sequence, the OTG_FS core, as a host,
does not generate a channel-halted interrupt. The OTG_FS core continues to operate
normally.

Workaround

Do not disable the host channel immediately after enabling it.

2.6.4 Error in software-read OTG_FS_DCFG register values

Description

When the application writes to the DAD and PFIVL bitfields in the OTG_FS_DCFG register,
and then reads the newly written bitfield values, the read values may not be correct.

The values written by the application, however, are correctly retained by the core, and the
normal operation of the device is not affected.

Workaround

Do not read from the OTG_FS_DCFG register’s DAD and PFIVL bitfields just after
programming them.

2.7 Ethernet peripheral limitations

2.7.1 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6 packets
without TCP, UDP or ICMP payloads

Description

The application provides the per-frame control to instruct the MAC to insert the L3
checksums for TCP, UDP and ICMP packets. When automatic checksum insertion is

 STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

Doc ID 022183 Rev 3 19/30

enabled and the input packet is an IPv6 packet without the TCP, UDP or ICMP payload, then
the MAC may incorrectly insert a checksum into the packet. For IPv6 packets without a TCP,
UDP or ICMP payload, the MAC core considers the next header (NH) field as the extension
header and continues to parse the extension header. Sometimes, the payload data in such
packets matches the NH field for TCP, UDP or ICMP and, as a result, the MAC core inserts
a checksum.

Workaround

When the IPv6 packets have a TCP, UDP or ICMP payload, enable checksum insertion for
transmit frames, or bypass checksum insertion by using the CIC (checksum insertion
control) bits in TDES0 (bits 23:22).

2.7.2 The Ethernet MAC processes invalid extension headers in the received
IPv6 frames

Description

In IPv6 frames, there can be zero or some extension headers preceding the actual IP
payload. The Ethernet MAC processes the following extension headers defined in the IPv6
protocol: Hop-by-Hop Options header, Routing header and Destination Options header.
All extension headers, except the Hop-by-Hop extension header, can be present multiple
times and in any order before the actual IP payload. The Hop-by-Hop extension header, if
present, has to come immediately after the IPv6’s main header.

The Ethernet MAC processes all (valid or invalid) extension headers including the Hop-by-
Hop extension headers that are present after the first extension header. For this reason, the
GMAC core will accept IPv6 frames with invalid Hop-by-Hop extension headers. As a
consequence, it will accept any IP payload as valid IPv6 frames with TCP, UDP or ICMP
payload, and then incorrectly update the Receive status of the corresponding frame.

Workaround

None.

2.7.3 MAC stuck in the Idle state on receiving the TxFIFO flush command
exactly 1 clock cycle after a transmission completes

Description

When the software issues a TxFIFO flush command, the transfer of frame data stops (even
in the middle of a frame transfer). The TxFIFO read controller goes into the Idle state
(TFRS=00 in ETH_MACDBGR) and then resumes its normal operation.

However, if the TxFIFO read controller receives the TxFIFO flush command exactly one
clock cycle after receiving the status from the MAC, the controller remains stuck in the Idle
state and stops transmitting frames from the TxFIFO. The system can recover from this
state only with a reset (e.g. a soft reset).

Workaround

Do not use the TxFIFO flush feature.

If TXFIFO flush is really needed, wait until the TxFIFO is empty prior to using the TxFIFO
flush command.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

20/30 Doc ID 022183 Rev 3

2.7.4 Transmit frame data corruption

Frame data corrupted when the TxFIFO is repeatedly transitioning from non-empty to empty
and then back to non-empty.

Description

Frame data may get corrupted when the TxFIFO is repeatedly transitioning from non-empty
to empty for a very short period, and then from empty to non-empty, without causing an
underflow.

This transitioning from non-empty to empty and back to non-empty happens when the rate
at which the data is being written to the TxFIFO is almost equal to or a little less than the
rate at which the data is being read.

This corruption cannot be detected by the receiver when the CRC is inserted by the MAC,
as the corrupted data is used for the CRC computation.

Workaround

Use the Store-and-Forward mode: TSF=1 (bit 21 in ETH_DMAOMR). In this mode, the data
is transmitted only when the whole packet is available in the TxFIFO.

2.8 FSMC peripheral limitation

2.8.1 Dummy read cycles inserted when reading synchronous memories

Description

When performing a burst read access to a synchronous memory, some dummy read
accesses are performed at the end of the burst cycle, whatever the type of AHB burst
access. However, the extra data values which are read are not used by the FSMC and there
is no functional failure. The number of dummy reads corresponds to the AHB data size.

Example: if AHB data size = 32bit and MEMSIZE= 16bit, two extra 16-bit reads will be
performed.

Workaround

None.

2.8.2 FSMC synchronous mode and NWAIT signal disabled

Description

When the FSMC synchronous mode operates with the NWAIT signal disabled, if the polarity
(WAITPOL in the FSMC_BCRx register) of the NWAIT signal is identical to that of the
NWAIT input signal level, the system hangs and no fault is generated.

Workaround

PD6 (NWAIT signal) must not be connected to AF12 and the NWAIT polarity must be
configured to active high (set WAITPOL bit to 1 in FSMC_BCRx register).

 STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

Doc ID 022183 Rev 3 21/30

2.9 SDIO peripheral limitations

2.9.1 SDIO HW flow control

Description

When enabling the HW flow control by setting bit 14 of the SDIO_CLKCR register to ‘1’,
glitches can occur on the SDIOCLK output clock resulting in wrong data to be written into
the SD/MMC card or into the SDIO device. As a consequence, a CRC error will be reported
to the SD/SDIO MMC host interface (DCRCFAIL bit set to ‘1’ in SDIO_STA register).

Workaround

None.

Note: Do not use the HW flow control. Overrun errors (Rx mode) and FIFO underrun (Tx mode)
should be managed by the application software.

2.9.2 Wrong CCRCFAIL status after a response without CRC is received

Description

The CRC is calculated even if the response to a command does not contain any CRC field.
As a consequence, after the SDIO command IO_SEND_OP_COND (CMD5) is sent, the
CCRCFAIL bit of the SDIO_STA register is set.

Workaround

The CCRCFAIL bit in the SDIO_STA register shall be ignored by the software. CCRCFAIL
must be cleared by setting CCRCFAILC bit of the SDIO_ICR register after reception of the
response to the CMD5 command.

2.9.3 SDIO clock divider BYPASS mode may not work properly

Description

In high speed communication mode, when SDIO_CK is equal to 48 MHz
(PLL48_output = 48 MHz), the BYPASS bit is equal to ‘1’ and the NEGEDGE bit is equal to
‘0’ (respectively bit 10 and bit 13 in the SDIO_CLKCR register), the hold timing at the I/O pin
is not inline with the SD/MMC 2.0 specifications.

Workaround

When not using USB nor RNG, PLL48_output (SDIOCLK) frequency can be raised up to
75 MHz, allowing to reach 37.5 MHz on SDIO_CK in high speed mode. The BYPASS bit,
the CLKDIV bit and the NEGEDGE bit are equal to ‘0’.

2.9.4 Data corruption in SDIO clock dephasing (NEGEDGE) mode

Description

When NEGEDGE bit is set to ‘1’, it may lead to invalid data and command response read.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

22/30 Doc ID 022183 Rev 3

Workaround

None. A configuration with the NEGEDGE bit equal to ‘1’ should not be used.

2.9.5 CE-ATA multiple write command and card busy signal management

Description

The CE-ATA card may inform the host that it is busy by driving the SDIO_D0 line low, two
cycles after the transfer of a write command (RW_MULTIPLE_REGISTER or
RW_MULTIPLE_BLOCK). When the card is in a busy state, the host must not send any data
until the BUSY signal is de-asserted (SDIO_D0 released by the card).

This condition is not respected if the data state machine leaves the IDLE state (Write
operation programmed and started, DTEN = 1, DTDIR = 0 in SDIO_DCTRL register and
TXFIFOE = 0 in SDIO_STA register).

As a consequence, the write transfer fails and the data lines are corrupted.

Workaround

After sending the write command (RW_MULTIPLE_REGISTER or
RW_MULTIPLE_BLOCK), the application must check that the card is not busy by polling the
BSY bit of the ATA status register using the FAST_IO (CMD39) command before enabling
the data state machine.

2.10 DAC limitations

2.10.1 DMA underrun flag management

Description

If the DMA is not fast enough to input the next digital data to the DAC, as a consequence,
the same digital data is converted twice. In these conditions, the DMAUDR flag is set, which
usually leads to disable the DMA data transfers. This is not the case: the DMA is not
disabled by DMAUDR=1, and it keeps servicing the DAC.

Workaround

To disable the DAC DMA stream, reset the EN bit (corresponding to the DAC DMA stream)
in the DMA_SxCR register.

2.10.2 DMA request not automatically cleared by DMAEN=0

Description

if the application wants to stop the current DMA-to-DAC transfer, the DMA request is not
automatically cleared by DMAEN=0, or by DACEN=0.

If the application stops the DAC operation while the DMA request is high, the DMA request
will be pending while the DAC is reinitialized and restarted; with the risk that a spurious
unwanted DMA request is serviced as soon as the DAC is re-enabled.

 STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

Doc ID 022183 Rev 3 23/30

Workaround

To stop the current DMA-to-DAC transfer and restart, the following sequence should be
applied:

1. Check if DMAUDR is set.

2. Clear the DAC/DMAEN bit.

3. Clear the EN bit of the DAC DMA/Stream

4. Reconfigure by software the DAC, DMA, triggers etc.

5. Restart the application.

Revision code on device marking STM32F40x and STM32F41x

24/30 Doc ID 022183 Rev 3

Appendix A Revision code on device marking

Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5 show the marking compositions for the
UFBGA176, LQFP176, LQFP144, LQFP100 and LQFP64 packages, respectively. The only
fields shown are the Additional field containing the revision code and the Year and Week
fields making up the date code.

Figure 1. UFBGA176 top package view

�������	�

���
�������������
���������
�����������������������

��������

�������

 STM32F40x and STM32F41x Revision code on device marking

Doc ID 022183 Rev 3 25/30

Figure 2. LQFP176 top package view

��� ��

��������

!�
�������"�����#����

Revision code on device marking STM32F40x and STM32F41x

26/30 Doc ID 022183 Rev 3

Figure 3. LQFP144 top package view

���
�������������
���������
����������$������������

���%���&

��������

!�
�������"�����#����

 STM32F40x and STM32F41x Revision code on device marking

Doc ID 022183 Rev 3 27/30

Figure 4. LQFP100 top package view

������'&

���
�������������
���������
����������$������������

��������

!�
�������"�����#����

Revision code on device marking STM32F40x and STM32F41x

28/30 Doc ID 022183 Rev 3

Figure 5. LQFP64 top package view

��������

�

���
�������������
���������
����������$������������

$������

�������

��������

!�
�������"�����#����

 STM32F40x and STM32F41x Revision history

Doc ID 022183 Rev 3 29/30

Revision history

Table 5. Document revision history

Date Revision Changes

19-Sep-2011 1 Initial release.

12-Dec-2011 2

Replaced STM42F4xx by STM32F4xx on cover page.
Added silicon revision Z.

Modified link to ARM 32-bit Cortex-M4F errata notice in Section 1:
ARM™ 32-bit Cortex®M4F limitations.

Updated status of ART Accelerator prefetch queue and MCU device
ID limitations for revision Z in Table 4: Summary of silicon limitations

Updated Section 2.1.1: ART Accelerator prefetch queue instruction
is not supported and Section 2.1.2: MCU device ID is incorrect to
make differentiate between revision A and revision Z devices.
Added Section 2.1.5: Full JTAG configuration without NJTRST pin
cannot be used, Section 2.1.6: PDR_ON pin not available on
LQFP100 package for revision Z devices, Section 2.1.7: Incorrect
BOR option byte when consecutively programming BOR option byte,
and Section 2.1.8: Configuration of PH10 and PI10 as external
interrupts is erroneous.

Updated workaround for Section 2.5.5: nRTS signal abnormally
driven low after a protocol violation.

Added Section 2.9.2: Wrong CCRCFAIL status after a response
without CRC is received and Section 2.2.1: RVU and PVU flags are
not reset in STOP mode .

03-Aug-2012 3

Added Section 2.1.9: DMA2 data corruption when managing AHB
and APB peripherals in a concurrent way, Section 2.1.10: Slowing
down APB clock during a DMA transfer, Section 2.1.11: MPU
attribute to RTC and IWDG registers could be managed incorrectly,
Section 2.1.12: Delay after an RCC peripheral clock enabling,
Section 2.1.13: Battery charge monitoring lower than 2.4 Volts and
Section 2.1.14: Internal noise impacting the ADC accuracy.

Added Section 2.8.2: FSMC synchronous mode and NWAIT signal
disabled.

Added Section 2.9.3: SDIO clock divider BYPASS mode may not
work properly, Section 2.9.4: Data corruption in SDIO clock
dephasing (NEGEDGE) mode and Section 2.9.5: CE-ATA multiple
write command and card busy signal management.
Added Section 2.10: DAC limitations with Section 2.10.1: DMA
underrun flag management and Section 2.10.2: DMA request not
automatically cleared by DMAEN=0.

 STM32F40x and STM32F41x

30/30 Doc ID 022183 Rev 3

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 ARM™ 32-bit Cortex®M4F limitations
	1.1 CortexM4F interrupted loads to stack pointer can cause erroneous behavior
	Description
	Workaround

	2 STM32F40x and STM32F41x silicon limitations
	2.1 System limitations
	2.1.1 ART Accelerator prefetch queue instruction is not supported
	Description
	Workaround

	2.1.2 MCU device ID is incorrect
	Description
	Workaround

	2.1.3 Debugging Stop mode and system tick timer
	Description
	Workaround

	2.1.4 Debugging Stop mode with WFE entry
	Description
	Workaround

	2.1.5 Full JTAG configuration without NJTRST pin cannot be used
	Description
	Workaround

	2.1.6 PDR_ON pin not available on LQFP100 package for revision Z devices
	Description
	Workaround

	2.1.7 Incorrect BOR option byte when consecutively programming BOR option byte
	Description
	Workaround

	2.1.8 Configuration of PH10 and PI10 as external interrupts is erroneous
	Description
	Workaround

	2.1.9 DMA2 data corruption when managing AHB and APB peripherals in a concurrent way
	Description
	Workaround

	2.1.10 Slowing down APB clock during a DMA transfer
	Description
	Workaround

	2.1.11 MPU attribute to RTC and IWDG registers could be managed incorrectly
	Description
	Workaround

	2.1.12 Delay after an RCC peripheral clock enabling
	Description
	Workarounds

	2.1.13 Battery charge monitoring lower than 2.4 Volts
	Description
	Workaround

	2.1.14 Internal noise impacting the ADC accuracy
	Description
	Workarounds

	2.2 IWDG peripheral limitation
	2.2.1 RVU and PVU flags are not reset in STOP mode
	Description
	Workaround

	2.3 I2C peripheral limitations
	2.3.1 SMBus standard not fully supported
	Description
	Workarounds

	2.3.2 Start cannot be generated after a misplaced Stop
	Description
	Workaround

	2.3.3 Mismatch on the “Setup time for a repeated Start condition” timing parameter
	Description
	Workaround

	2.3.4 Data valid time (tVD;DAT) violated without the OVR flag being set
	Description
	Workaround

	2.4 I2S peripheral limitation
	2.4.1 In I2S slave mode, WS level must be set by the external master when enabling the I2S
	Description
	Workaround

	2.5 USART peripheral limitations
	2.5.1 Idle frame is not detected if receiver clock speed is deviated
	Description
	Workaround

	2.5.2 In full duplex mode, the Parity Error (PE) flag can be cleared by writing to the data register
	Description
	Workaround

	2.5.3 Parity Error (PE) flag is not set when receiving in Mute mode using address mark detection
	Description
	Workaround

	2.5.4 Break frame is transmitted regardless of nCTS input line status
	Description
	Workaround

	2.5.5 nRTS signal abnormally driven low after a protocol violation
	Description
	Workaround

	2.6 OTG_FS peripheral limitations
	2.6.1 Data in RxFIFO is overwritten when all channels are disabled simultaneously
	Description

	2.6.2 OTG host blocks the receive channel when receiving IN packets and no TxFIFO is configured
	Description

	2.6.3 Host channel-halted interrupt not generated when the channel is disabled
	Description

	2.6.4 Error in software-read OTG_FS_DCFG register values
	Description

	2.7 Ethernet peripheral limitations
	2.7.1 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6 packets without TCP, UDP or ICMP payloads
	Description

	2.7.2 The Ethernet MAC processes invalid extension headers in the received IPv6 frames
	Description

	2.7.3 MAC stuck in the Idle state on receiving the TxFIFO flush command exactly 1 clock cycle after a transmission completes
	Description

	2.7.4 Transmit frame data corruption
	Description
	Workaround

	2.8 FSMC peripheral limitation
	2.8.1 Dummy read cycles inserted when reading synchronous memories
	Description
	Workaround

	2.8.2 FSMC synchronous mode and NWAIT signal disabled
	Description
	Workaround

	2.9 SDIO peripheral limitations
	2.9.1 SDIO HW flow control
	Description
	Workaround

	2.9.2 Wrong CCRCFAIL status after a response without CRC is received
	Description
	Workaround

	2.9.3 SDIO clock divider BYPASS mode may not work properly
	Description
	Workaround

	2.9.4 Data corruption in SDIO clock dephasing (NEGEDGE) mode
	Description
	Workaround

	2.9.5 CE-ATA multiple write command and card busy signal management
	Description
	Workaround

	2.10 DAC limitations
	2.10.1 DMA underrun flag management
	Description
	Workaround

	2.10.2 DMA request not automatically cleared by DMAEN=0
	Description
	Workaround

	Appendix A Revision code on device marking
	Revision history

